Report No. CDOT-DTD-R-2005-8 Final Report

HOT BITUMINOUS PAVEMENT VOIDS ACCEPTANCE REVIEW OF QC/QA DATA 2000 THROUGH 2003

Eric Chavez, CDOT Pavement Design Unit

March 2005

COLORADO DEPARTMENT OF TRANSPORTATION RESEARCH BRANCH

The contents of this report reflect the views of the author(s), who is(are) responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

				cumentation Page
1. Report No. CDOT-DTD-R-2005-8	2. Government Accession No.	3. Rec	sipient's Catalog No.	
4. Title and Subtitle HOT BITUMINOUS PAVEMENT VOIDS ACCEPTANCE	LIDOUGUL 2002		oort Date h 2005	
REVIEW OF QC/QA DATA 2000 T	HROUGH 2003	6. Per	forming Organization	n Code
7. Author(s) Eric Chavez			forming Organization T-DTD-R-2005-8	
Performing Organization Name and Addre Colorado Department of Transporta			ork Unit No. (TRAIS)	
4201 E. Arkansas Ave. Denver, Colorado 80222		11. Co	ontract or Grant No.	
12. Sponsoring Agency Name and Address Colorado Department of Transporta 4201 E. Arkansas Ave. Denver, CO 80222	ation - Research	13. Ту	pe of Report and Pe	riod Covered
Deriver, CO 60222		14. Sp	onsoring Agency Co	ode
15. Supplementary Notes Prepared in cooperation with the U	S Department of Transportation	on, Federal Hig	Jhway Administra	ation
This report analyzes the Quality acceptance as the testing criteria a projects is accomplished by review Payments (I/DP). Analysis of each density, and joint density is present data including: year, region, & grad. The specification and the proje fairly constant. No definite upward projects have received incentive particular the best results being above 93% in The joint density specification which projects and is showing reasonable rise as contractors gain experience.	warded in the years 2000 thro ing the Calculated Pay Factor of the test elements: asphalt of the test elements: asphalt of the din tables, figures, and repo- ing. cts are performing reasonably or downward trends can be selements than disincentive pays elements are at reasonable to a specification. The asphalt con the was added to the calculation of results. The average pay face	ugh 2003. An Composite (Content, voids rts. Various dwell. The reseen in the dataments. The avhigh levels. The avoids for I/DP in D	alysis of the ove PFC) and Incent in mineral aggre ata groupings ar ults for the data a cover the four- verage pay over the the VMA and man voids elements a vecember of 2002 ment is just under	rall performance of the tive/Disincentive egate, air voids, mat e used to evaluate the show that it is remaining year time period more the four years is 1.00660. It density elements show are at approximately 90%. 2 was used on thirteen
Quality Control/Quality Assurance (percent within limits, Incentive/Disirvoids acceptance, asphalt content, air voids, mat density, joint density	ncentive Payments (I/DP),	No restrictions through the	. This document i	is available to the public on Service
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this pag Unclassified		21. No. of Pages 190	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Hot Bituminous Pavement Voids Acceptance Review of QC/QA Data 2000 Through 2003

by

Eric Chavez

Report No. CDOT-DTD-R-2005-8

Prepared by
Colorado Department of Transportation
Research Branch

Sponsored by the
Colorado Department of Transportation
In Cooperation with the
U.S. Department of Transportation
Federal Highway Administration

March 2005

Colorado Department of Transportation Research Branch 4201 E. Arkansas Ave. Denver, CO 80222 (303) 757-9266

TABLE OF CONTENTS

1.0	INTR	ODUC	CTION AND COMMENTS	1
2.0	SPEC	CIFICA	ATIONS	2
3.0	CAL	CULA	TIONS AND DEFINITIONS	3
4.0	DESC	CRIPT	ION OF REPORTS	6
5.0	DISC	USSI	ON OF DATA	10
	5.1	Proje	ects Evaluated	10
	5.2	Calc	ulated Pay Factor Composite	10
	5.3	Calc	ulated Pay Factor Composite by Year and Region	14
	5.4	Incer	ntive/Disincentive Payments	16
	5.5	Revie	ew of Yearly Data by Test Element 2000 through 2003 .	17
	5.6	Com	parison of Test Element Quality Levels 2000 through 20)03 25
	5.7	Test	Element Quality Levels for Gradings S & SX 2000 to 20)03 27
	5.8	Joint	Density Test Information	32
	5.9	Reca	p Reports, 2000 through 2003 Data	32
	5.10	Yearl	y Reports 2000 though 2003	33
6.0	SUMI	MARY	,	34
7.0	UPD	ATES	AND CONTACT	35
REF	EREN	ICES		35
Арр	endix	Α	Recap Reports for Project Data 2000 through 2003	
App	endix	В	Reports for 2000 Projects	
App	endix	С	Reports for 2001 Projects	
Арр	endix	D	Reports for 2002 Projects	
App	endix	E	Reports for 2003 Projects	
Арр	endix	F	Joint Density Process Information	
Арр	endix	G	Revision to Sections 105 & 106, Quality of HBP (Voids Acc	ceptance)
Арр	endix	Н	Colorado Procedure 71 Determining Quality Level	

LIST OF FIGURES

1.	Calculated Pay Factor Composite All Gradings	13
2.	. Calculated Pay Factor Composite, Gradings S & SX	13
3.	. Calculated Pay Factor Composite All Gradings 2000 to 2003.	16
4.	Percent Asphalt Quality Levels	21
5.	Percent Asphalt Pay Factors	21
6.	VMA Quality Levels	22
7.	VMA Pay Factors	22
8.	Air Voids Quality Levels	23
9.	. Air Voids Pay Factors	23
10	0. Mat Density Quality Levels	24
1	1. Mat Density Pay Factors	24
1:	2. Element Quality Levels by Year	26
13	3. Element Quality Levels 2000 to 2003	26
14	4. Percent Asphalt Quality Levels by Grading	30
1	5. VMA Quality Levels by Grading	30
16	6. Air Voids Quality Levels by Grading	31
17	7. Mat Density Quality Levels by Grading	31
LIST	OF TABLES	
1.	. "W" Factors for Various Elements	2
2.	Projects Evaluated	10
3.	Calculated Pay Factor Composite by Year	12
4.	Calculated Pay Factor Composite by Year/Region	15
5.	Incentive/Disincentive Payments – Recap by Year	17
6.	Recap of Yearly Data by Test Element All Gradings	20
7.	Review of Test Elements - Gradings S & SX	28
8.	Joint Density Test Information by Grading	33

LIST OF REPORTS

1.	Asphalt Content – Recap by Grading/Year/Region	Appendix A
2.	VMA – Recap by Grading/Year/Region	Appendix A
3.	Air Voids – Recap by Grading/Year/Region	Appendix A
4.	Mat Density – Recap by Grading/Year/Region	Appendix A
5.	Project Listing by Region/Subaccount	Appendix B, C, D, E
6.	Project Data	Appendix B, C, D, E
7.	Calculated Pay Factor Composite and I/DP by Region	Appendix B, C, D, E
8.	Asphalt Content – Process Information	Appendix B, C, D, E
9.	VMA – Process Information	Appendix B, C, D, E
10	.Air Voids – Process Information	Appendix B, C, D, E
11	.Mat Density Process Information	Appendix B, C, D, E
12	Joint Density Process Information	Appendix F

1.0 INTRODUCTION AND COMMENTS

The Colorado Department of Transportation (CDOT) began Quality Control/Quality Assurance (QC/QA) construction for hot bituminous pavement (HBP) in 1992 with the implementation of a three-year pilot program which was essentially completed in 1994 (several projects were held over and completed in 1995). Three test elements were included in the calculations for pay factors, percent asphalt, mat density, and aggregate gradation.

In 1993 CDOT announced their intent to adopt a QC/QA voids acceptance (VA) specification for HBP. Under Phase 1 of the VA pilot program nine VA pilot projects were completed by the end of 1996. Three additional projects were constructed in 1997.

In 1998 a series of VA projects were let to contract under Phase 2 of the pilot specification. Four test elements were included in the calculations for pay factors under Phase 2, percent asphalt, voids in mineral aggregate, air voids, and mat density.

In December of 2002 joint density testing was added as the fifth element included in the calculation for Incentive/Disincentive Payment (I/DP). The weights of the original elements were adjusted to account for the new element.

This report analyzes the voids acceptance data for the years 2000 through 2003. Reports evaluating the asphalt content, voids in mineral aggregate, air voids, mat density, & joint density elements sorted by grading & region are presented in this report. Recap reports of the same data sorted by region are also presented. Charts comparing the quality level and pay factor information for the years 2000 through 2003 are displayed for the percent asphalt, voids in mineral aggregate, air voids, and mat density elements. The joint density test information is also covered for the projects that contained that specification. Detailed reports which show all the process data for each of the years 2000 through 2003 are included in Appendices B, C, D, & E.

The general format and presentation of data in this report are similar to that used in previous QC/QA reports published by the department. Information on the background, development, philosophy and rationale involved can be found in the previous reports and is not repeated here.

2.0 SPECIFICATIONS

Specifications - Revision of Sections 105 and 106, Quality of Hot Bituminous Pavement (Voids Acceptance). The Revision to Sections 105 & 106 governs the QC/QA calculations. A major change to the specification was made with the release of the specification dated December 20, 2002. Joint density testing was included in the calculation for Incentive/Disincentive Payments (I/DP) in this release. The joint density element accounts for 15 percent of the total in the calculation for I/DP. The weights associated with the other test elements were adjusted to account for the new testing element. Table 1 shows the old and new weights and test elements. No other changes were made in the specification that effected the calculations for quality level, pay factor, or I/DP.

Table 1. "W" Factors For Various Elements

	W Factor				
Specification	Percent Asphalt	VMA	Air Voids	Mat Density	Joint Density
10/4/01 & Older	10	10	40	40	
12/20/02 & Newer	10	10	30	35	15

The Revision of Sections 105 and 106 has been revised numerous times over the years but the changes were in other areas and did not affect the QC/QA calculations. The calculation for quality levels has remained unchanged since the beginning. Use of CDOT's QC/QA computer program is a requirement of the specification. The computer program is based on this specification.

3.0 CALCULATIONS AND DEFINITIONS

Process Quantities – Process quantities are used for all calculations in this report except for the calculation of the Calculated Pay Factor Composite. In general, processes group like material or construction techniques together. As long as the material being evaluated remains unchanged it will be added to the current process. If a change to the material or the construction technique occurs then a new process will be created. Please see the Revision to Sections 105 & 106, Quality of Hot Bituminous Pavement (Voids Acceptance) for details on processes.

Calculated Pay Factor Composite – The Calculated Pay Factor Composite (CPFC) is a way to evaluate the overall performance of the project. The CPFC represents the percentage increase or decrease to the unit price for hot bituminous pavement paid on the project. Projects with a CPFC greater than 1.0 will have received an incentive payment. Projects with a CPFC less than 1.0 will have received a disincentive payment. The CPFC is back calculated from the project's Final Incentive/Disincentive Payment (I/DP). This calculation is used rather than an overall quality level calculation since a project can contain processes in which no quality level is calculated, processes with less than three tests. The calculation used here also addresses the problem which occurred in some of the reported projects in which the final element quantities were not equal. The main reason this calculation is used is to avoid the problems associated with averaging of the data. The calculation is as follows:

$$CPFC = (I/DP / ((UP_P) * (QR_P))) + 1$$

Where: CPFC = Calculated Pay Factor Composite.

I/DP = Incentive/Disincentive Payment for the project.

UP_P = Calculated Unit Price for the project.

QR_P = Quantity Represented Project, average of the tons reported in the percent asphalt, VMA, and air voids elements.

$$UP_P = (\sum (UP_n * T_n)) / \sum T_n$$

Where: UP_n = Unit Price for the process.

T_n = Tons represented by the process, average of the tons reported in the percent asphalt, VMA, and air voids elements.

Note: The quantities used in the calculation of average tons and average price are the quantities reported in the in the percent asphalt, VMA, and air voids elements. After reviewing the project data it was determined that these quantities most accurately represented the actual produced quantity when the reported quantities were not equal in the test elements.

CTS (Compaction Test Section) — A compaction pavement test section used to establish the number of rollers and rolling pattern needed to achieve specified densities, see Revision of Section 401, Compaction Test Section for details.

CTS Tons (Compaction test section tons) – Tons of material accounted for in the mat density test element by the construction of compaction test sections within the project.

CTS I/DP (Compaction test section Incentive/Disincentive payment) – The calculated I/DP for compaction test sections.

I/DP (Incentive/Disincentive Payment) - The amount of increase or decrease paid for a quantity of material within a test element, based on the calculated pay factor. The I/DP for a project is the summation of all calculated element I/DPs.

Joint Density – Density measurements taken on the longitudinal joint between paving passes, see Revision of Section 401, Plant Mix Pavements – General for details.

Mean to TV - The absolute value of the difference between the calculated mean for the process and the target value for the test element. The lower the value the closer the mean approaches the target value of the specification. One of the two factors that effects the quality level calculation. The other factor being the standard deviation for the process.

Pay Factor - The amount of increase or decrease, displayed as a percentage, applied to the unit price of the pavement. Multiplied by the W factor for the element to calculate I/DP for an element.

PF 1.0 Tons (Pay factor 1.0 tons) – Used in the mat density element to account for tons of material in which the pay factor is set to 1.0 by specification. Usually used on a project when the thickness of the mat being placed becomes too thin to be accurately tested.

Quality Level – Quality Levels (Percent within limits) are calculated in accordance with Colorado Procedure 71. Quality Level analysis is a statistical procedure for estimating the percent compliance to specification limits and is affected by shifts in the arithmetic mean and by the sample standard deviation. Analysis of both factors is essential whenever evaluating quality level results.

Std. Dev. (Standard Deviation) equation:
$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$

 $Std.\ Dev.-V$ (Standard Deviation minus the V Factor) - A comparison of the standard deviation for the process to the historical standard deviation for the element, the V factor. Negative values indicate that the process has a smaller standard deviation than historically reported. The lower the number the better. One of the two factors that effects the quality level calculation. The other factor being the mean for the process as it relates to the target value for the specification.

TV (Target Value) - The midpoint of the specification range.

V (V Factor) - One standard deviation for the test element based on historical data.

VA - Voids Acceptance

VMA – Voids in Mineral Aggregate

Weighted Average – The weighted average used in this report is calculated on the tons of material represented.

2V Adj. (2V adjustment) — Test results in the asphalt content or mat density test elements that are greater than 2 x V outside the tolerance limits are designated as a separate process and the quantity it represents are price reduced according to 105.03(d). A price reduction is applied to all of the test elements for the quantity of material represented. This requires that adjustments are made to the original calculations for I/DP in the other test elements. The amount shown as the 2V Adj. is the total amount of adjustment applied to the original calculations.

4.0 DESCRIPTION OF REPORTS

Report Criteria – At the beginning of each report the selection criteria are listed for the data contained in the report. The primary grouping of projects is by their bid date. Quality levels are not calculated on processes that contain less than three test results. Therefore, those processes are excluded from the reports that contain quality level calculations. Other justifications as to why a project or process is excluded from the report are detailed in the report criteria.

Sample Size – Not too many conclusions should be drawn when the number of observations, sample size, is small. Generally speaking, an evaluation of five or less samples is not considered very reliable. Always check the number of samples included in the evaluation when doing comparisons of the data. Most of the reports presented here will indicate the number of samples included in the various data groupings. Figures that appear in this report will have associated tables that will give the number of samples included in the data groupings.

Reports 1 to 4 - Test Element Reports, Recap by Grading/Year/Region 2000 through 2003: Asphalt Content, Voids in Mineral Aggregate, Air Voids, & Mat Density, Appendix A. For each of the test elements a report that recaps the information is presented. The information is grouped first by grading and then by year. Region information is displayed for each year. Information presented includes: processes, tons, and tests along with the weighted averages for price, quality level, pay factor, mean to target value, standard deviation, and standard deviation minus the V value. Totals are calculated for each year. These reports are very useful for tracking the performance of a grading of HBP through the years and by each region. Detailed reports for the information contained in these reports can be found in Appendices B through E.

REPORTS BY YEAR 2000 through 2003, Appendices B, C, D, & E

A series of detailed reports is presented for each year in the appendices

Project Listing by Region/Subaccount. This report contain information for the projects included in the evaluation for a single year. The subaccount, project code, location, region, supplier, bid date, total bid, and plan quantity are listed for each project. The report groups the projects by region and contains a region recap. A statewide recap is given at the end of the report.

Project Data. The Project Data report displays all of the QC/QA data reported for each project. The projects are sorted by subaccount number. Each project's data is detailed by mix design and process number. The number of tests, quantity in tons, quality levels, pay factors, and Incentive/Disincentive Payment are given for each mix design and process. A summary for each project is also displayed and shows the CPFC. This report contains all of the project's data and is the best report to review when concerned about an individual project. All of a project's data may not be contained in other reports if the data does not meet that report's individual criteria.

Calculated Pay Factor Composite and I/DP by Region. This report evaluates two key calculations for each project, the Calculated Pay Factor Composite (CPFC) and the project Incentive/Disincentive Payment (I/DP). The Calculated Pay Factor Composite gives an index of the overall quality of the project; see Calculations for details on the calculation of the CPFC. The I/DP is the incentive or disincentive amount the project received for the HBP. The report groups the projects by region and contains a region recap. A statewide recap of the information is given at the end of the report.

Note: There is not a direct correlation between Calculated Pay Factor Composite and Incentive/Disincentive Payment. The calculations for pay factors are dependent on the number of tests and the quantity of material associated with each process. Larger runs of production, processes, have the potential to receive higher pay factors. This is a benefit of producing uniform material. Differences in the process quantity can result in a different calculation for pay factor even if the quality levels are the same. Please refer to the Revision to Sections 105 and 106 for details on the calculations.

Asphalt Content – Process Information. Asphalt Content information is detailed in this report. The information is grouped by grading and sorted by quality level. For each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.

Voids In Mineral Aggregate – Process Information. Voids in Mineral Aggregate information is detailed in this report. The information is grouped by grading and sorted by quality level. For each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.

Air Voids – Process Information. Air Voids information is detailed in this report. The information is grouped by grading and sorted by quality level. For each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.

Mat Density – Process Information. Mat Density information is detailed in this report. The information is grouped by grading and sorted by quality level. For each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.

Joint Density – Process Information by Grading. Joint density information is detailed in this report for the projects that contained that specification. The information is grouped by grading and sorted by quality level. For each process the quality level, pay factor, target value, mean, and standard deviation are given. The mean to target value and standard deviation minus V factor calculations are important whenever evaluating the quality level for the process. A recap for each grading is calculated. A recap that combines the information for all of the gradings is given at the end of the report.

5.0 DISCUSSION OF THE DATA

5.1 Projects Evaluated

Table 2 displays the number of projects and tons of material awarded by year. The projects that have been evaluated are separated by the acceptance criteria, voids or gradation. The gradation acceptance projects are covered in a separate report. The data for only three submitted projects has been evaluated for projects constructed in 2001. In the other years a sufficient number of projects have been included for practical evaluations. Additional project data will be added to the database as they are received by the Pavement Design Unit.

Table 2. Projects Evaluated

			Evaluated				
	Aw	arded	Voids Acceptance		rded Voids Acceptance Gradation Accep		n Acceptance
Year	Projects	Tons	Projects	Tons	Projects	Tons	
2000	78	2,258,407	10	663,818	49	1,167,563	
2001	54	1,321,609	3	155,270	39	870,042	
2002	71	1,974,106	20	811,523	41	868,182	
2003	74	2,327,464	15	569,645	28	734,770	

5.2 Calculated Pay Factor Composite

The Calculated Pay Factor Composite (CPFC) information for the years 2000 through 2003 is displayed in Table 3. The information is sorted by year and then by grading. The CPFC represents the percentage increase or decrease to the unit price for hot bituminous pavement paid on the project, see the section Calculations and Definitions for details on the calculation of the CPFC. A CPFC above 1.0 indicates that an incentive payment was paid for the HBP. A CPFC below 1.0 indicates that a disincentive was applied to the pavement. The weighted average is calculated for each

data grouping. The maximum and minimum values are also displayed. Figure 1 displays the overall CPFC, all gradings of HBP included, by year for the years 2000 through 2003. Figure 2 displays the CPFC results for gradings S and SX over the same time period. The results for 2001 show the best performance with an average incentive of just over 4% being awarded. However, only three projects are included in the evaluation for this year. In the other years the averages range between positive 1.8% and negative 1.2% of the neutral pay factor of 1.0. The averages when evaluating the pavements by grading are still within the plus and minus 2% range from the neutral amount. The overall average for the four-years is 1.00660. More projects received incentive payments than disincentive payments over this time period.

Table 3. Calculated Pay Factor Composite by Year and Grading

Criteria: Projects with Bid Dates from 1/1/00 to 12/31/03.

Projects that contain more than one grading are EXCLUDED from this Report PFC is back calculated from the Project's I/DP.

					CPFC	
Year 2000		Projects	Tons	Average:	Maximum:	Minimum:
	Grading: S	10	639,778	1.01800	1.03974	0.98801
	Totals: 2000	10	639,778	1.01800	1.03974	0.98801
					CPFC	
Year 2001		Projects	Tons	Average:	Maximum:	Minimum:
	Grading: S	3	158,375	1.04109	1.05302	1.02334
	Totals: 2001	3	158,375	1.04109	1.05302	1.02334
					CPFC	
Year 2002		Projects	Tons	Average:	Maximum:	Minimum:
	Grading: S	16	534,093	0.98352	1.04162	0.76392
	Grading: SX	4	293,822	1.00530	1.04132	0.97720
	Totals: 2002	20	827,915	0.98788	1.04162	0.76392
					CPFC	
Year 2003		Projects	Tons	Average:	Maximum:	Minimum:
	Grading: S	12	454,972	1.02133	1.04771	0.96642
	Grading: SX	3	105,685	0.99998	1.00431	0.99270
	Totals: 2003	15	560,657	1.01706	1.04771	0.96642
Results for	all Projects 1/	1/00 to 12/3	1/03.		CPFC	
			Tons	Average:	Maximum:	Minimum:
			2,186,725	1.00660	1.05302	0.76392

Figure 1. Calculated Pay Factor Composite by Year

Figure 2. Calculated Pay Factor Composite by Year, Grading S & SX

5.3 Calculated Pay Factor Composite by Year and Region

The Calculated Pay Factor Composite information is also sorted by region for each of the years 2000 through 2003 and is displayed in Table 4. The weighted average is calculated for each data grouping. The maximum and minimum values are also displayed. Most of the groupings contain fewer than five projects. Nine of the groupings contain less than three. The number of projects is really too small to make significant conclusions about the performance within a region for the year. The overall results for the four time period are shown at the end of the report. A better indication of the region's performance can be obtained by reviewing these results. Figure 3 shows the overall results for each region for the four-year time period, 2000 through 2003. Region 1 shows the best results but only has three projects included in their evaluations. Regions 4 & 6 have the next best results both being above the 1.0 mark. Regions 2, 3, & 5 have averages below 1.0 showing that more disincentives were applied than incentives. The average disincentive amount is less than 1% in these regions. Region 5 has completed only one VA project at this time. Region 2 has completed the most with nineteen. Region 6 has next highest completed with fifteen.

Table 4. Calculated Pay Factor Composite by Year/Region

Criteria: Projects with Bid Dates from 1/1/00 to 12/31/03.

PFC is back calculated from the Project's I/DP

A Calculated Average Unit Price is used in the calculation

				Calculat	ed Pay Factor Co	omposite
2000	Region	Projects	Tons	Average	Maximum	Minimum
	1	1	12,317	1.03974	1.03974	1.03974
	2	4	282,442	1.00678	1.02100	0.99521
	4	4	325,178	1.02010	1.03414	0.98801
	6	1	19,841	1.03272	1.03272	1.03272
	Totals	10	639,778	1.01800	1.03974	0.98801
				Calculat	ed Pay Factor Co	omposite
2001	Region	Projects	Tons	Average	Maximum	Minimum
	2	2	104,496	1.03818	1.05302	1.02334
	6	1	53,879	1.04691	1.04691	1.04691
	Totals	3	158,375	1.04109	1.05302	1.02334
				Calculat	ed Pay Factor Co	omposite
2002	Region	Projects	Tons	Average	Maximum	Minimum
	1	2	88,382	1.02090	1.04132	1.00047
	2	6	167,262	0.94879	1.02820	0.76392
	3	2	109,123	0.99324	1.00929	0.97720
	4	2	154,411	1.02562	1.03317	1.01807
	5	1	113,295	0.99338	0.99338	0.99338
	6	7	195,442	0.99884	1.04162	0.83698
	Totals	20	827,915	0.98788	1.04162	0.76392
				Calculat	ed Pay Factor Co	omposite
2003	Region	Projects	Tons	Average	Maximum	Minimum
	2	7	346,124	1.01274	1.02979	0.96642
	3	2	78,685	0.99781	1.00292	0.99270
	6	6	135,848	1.02851	1.04771	1.00830
	Totals	15	560,657	1.01706	1.04771	0.96642
				Calculat	ed Pay Factor Co	omposite
2000 to 2003	Region	Projects	Tons	Average	Maximum	Minimum
	1	3	100,699	1.02718	1.04132	1.00047
	2	19	900,324	0.99397	1.05302	0.76392
	3	4	187,808	0.99553	1.00929	0.97720
	4	6	479,589	1.02194	1.03414	0.98801
	5	1	113,295	0.99338	0.99338	0.99338
	6	15	405,010	1.01617	1.04771	0.83698
	Totals	48	2,186,725	1.00660	1.05302	0.76392

Figure 3. Calculated Pay Factor Composite 2000 to 2003 by Region

5.4 Incentive/Disincentive Payments

A recap of the Incentive/Disincentive Payments (I/DP) for the years 2000 through 2003 is presented in Table 5. For each year, the total number of projects, the number that had incentive payments, and number with disincentive payments is displayed. The summation of the I/DPs, the maximum, minimum and average are given for each year. The I/DP is the total dollar amount of incentive or disincentive payment the project received for the hot bituminous pavement and is directly related to the of tons of material used in the project. The size of the projects, tons of HBP, included in the evaluations can skew the results. Large projects being compared to smaller projects will have different I/DPs purely based on the multiplication of the pay factor times the tons of material. The projects with the largest I/DPs do not necessarily equate to the projects with the best quality levels. It is important to consider the dollar amounts being paid but a better way of evaluating the projects performance is to review the Calculated Pay Factor Composite.

Table 5. Incentive/Disincentive Payments – Recap by Year

2000			Incentive/Disir	ncentive Payment
	Number of Projects	10	Sum I/DPs	\$401,328.51
	Positive I/DPs	7	Maximum	\$119,561.18
	Negative I/DPs	3	Minimum	(\$34,248.47)
	Total Tons	639,778	Average I/DP	\$40,132.85
2001			Incentive/Disir	ncentive Payment
	Number of Projects	3	Sum I/DPs	\$197,383.57
	Positive I/DPs	3	Maximum	\$94,773.91
	Negative I/DPs	0	Minimum	\$49,401.46
	Total Tons	158,375	Average I/DP	\$65,794.52
2002			Incentive/Disir	ncentive Payment
	Number of Projects	20	Sum I/DPs	\$196,853.67
	Positive I/DPs	12	Maximum	\$99,877.90
	Negative I/DPs	8	Minimum	(\$95,998.88)
	Total Tons	827,915	Average I/DP	\$9,842.68
2003			Incentive/Disinc	entive Payment
	Number of Projects	15	Sum I/DPs	\$266,282.00
	Positive I/DPs	13	Maximum	\$63,108.44
	Negative I/DPs	2	Minimum	(\$53,185.02)
	Total Tons	560,657	Average I/DP	\$17,752.13

5.5 Review of Yearly Data by Test Element 2000 through 2003 - Percent Asphalt, Voids in Mineral Aggregate, Air Voids, & Mat Density

The overall results, all grading included, for each of the test elements for the years 2000 through 2003 are listed in Table 6. The quality level, pay factor, and standard deviation are shown for each element. The mean to target value and standard deviation minus V factor are also calculated. The mean to target value calculation shows the relationship between the mean for the processes in comparison to the midpoint of the specification limits, the target value. The calculated value is the absolute difference between the mean and the target value. The lower the value the closer the mean is to the target value and increases the probability that the material will be within specification. The standard deviation minus V factor shows the comparison of the standard deviation for the processes to the historical standard deviation, the V factor. A negative number indicates that the standard deviation for the processes is less than the historical value increasing the probability that the material will be within specification. Positive values show that the standard deviations have exceeded the historical values. The calculation of quality levels is dependent on the relationship of both of these values as they relate to the specification limits. Quality levels are not calculated on processes with less than three tests. Therefore, these processes are excluded from the evaluations which include the quality level calculation.

All of the yearly quality levels for each of the elements show good results. The lowest quality level is 88.303 in the Air Voids element in 2002. This related to an average pay factor just under the 1.0 value. All of the other pay factors are above the 1.0 mark showing that on average incentive payments have been paid on those elements. The mean to target value calculations show that the material is being produced close to the midpoint of the specification, calculated values approaching zero, increasing the probability that the material will be within specification limits. The standard deviations for the test results show that the material being produced is below the variation of the historical data, negative values in the standard deviation minus V value column. All of the calculated values in this column except one are negative numbers. The quality

levels and pay factors for each of the elements are displayed in Figures 4-11. The best results are shown in 2001 but only three projects are included in the evaluations for that year. Excluding the year 2001, a downward trend in is shown in the quality levels of both the percent asphalt and VMA elements. In the percent asphalt element the decrease is not very significant, less than 2.5%. In the VMA element the decrease is greater at slightly more than 5%. However, the quality levels of this element are the best of any element. These decreases are not dramatic and may be caused more by the newness of the specification and the number of projects completed. The air voids element has remained essentially constant with a small amount of movement up and down each year. Improvements in the mat density element are indicated by an upward trend shown in this element. The quality levels for this element are very good with an overall average of 93.165.

Table 6. Recap of Yearly Data by Test Element, All Gradings

Percent Asphalt

Year	Proj.	Tons	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	St. Dev. - V
2000	10	638,915	644	91.565	1.01618	0.08	0.146	0.200	-0.054
2001	3	158,375	159	94.376	1.03610	0.04	0.150	0.200	-0.050
2002	20	817,311	861	89.665	1.00949	0.06	0.167	0.200	-0.033
2003	15	554,538	563	89.123	1.00428	0.08	0.163	0.200	-0.037

VMA

Year	Proj.	Tons	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	St. Dev. - V
2000	10	638,914	644	97.072	1.04344	0.27	0.406	0.600	-0.194
2001	3	158,375	159	98.510	1.05412	0.20	0.398	0.600	-0.202
2002	20	813,311	858	94.065	1.02340	0.28	0.498	0.600	-0.102
2003	15	559,516	568	91.683	1.01404	0.48	0.396	0.600	-0.204

Air Voids

Year	Proj.	Tons	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	St. Dev. - V
2000	10	617,914	623	89.931	1.00546	0.35	0.564	0.600	-0.036
2001	3	158,375	159	93.581	1.03033	0.34	0.514	0.600	-0.086
2002	20	813,311	844	88.303	0.99706	0.26	0.651	0.600	0.051
2003	15	558,551	567	90.878	1.01680	0.35	0.564	0.600	-0.036

Mat Density

Year	Proj.	Tons	Tests	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	St. Dev. - V
2000	10	609,582	1,232	92.145	1.01344	0.694	0.894	1.100	-0.206
2001	3	157,375	315	95.661	1.03911	0.417	0.812	1.100	-0.288
2002	20	747,606	1,513	93.171	1.02358	0.452	0.919	1.100	-0.181
2003	15	515,088	1,060	93.600	1.02606	0.468	0.900	1.100	-0.200

Figure 4. Percent Asphalt Quality Levels

Figure 5. Percent Asphalt Pay Factors

Figure 6. VMA Quality Levels

Figure 7. VMA Pay Factors

Figure 8. Air Voids Quality Levels

Figure 9. Air Voids Pay Factors

Figure 10. Mat Density Quality Levels

Figure 11. Mat Density Pay Factors

5.6 Comparison Between Test Element Quality Levels 2000 through 2003

The quality levels for each of the elements by year 2000 through 2003 are displayed in Figure 12. This figure shows the relationship of the quality levels between test elements. The results for VMA and Mat Density elements are consistently better than those of the other two elements. The VMA results are the highest in the first three years followed by the mat density element. In 2003 that order is reversed. The percent asphalt element has the third best results in the first three years and the fourth best in 2003. The air voids element has the worst results in the first three years and third best in 2003. Figure 13 shows the results for elements over the four-year period. The order of ranking from best to worst is: VMA, mat density, percent asphalt, and then air voids.

One of the factors that might influence the quality level results is the importance given to that test element in the specification, the weight assigned to the element. Table 1, "W" Factors for Various Elements displays the weights given to each of the elements.

Table 1. "W" Factors for Various Elements

	W Factor							
Specification	Percent Asphalt	VMA	Air Voids	Mat Density	Joint Density			
10/4/01 & Older	10	10	40	40				
12/20/02 & Newer	10	10	30	35	15			

A high importance is given to the mat density element and its W factor is equal to or better than the other elements. This element ranks second in reported quality levels. The air voids element has the second highest W factor but ranks lowest in quality levels. The VMA element with a weight of 10% ranks first in reported quality levels. The weight given the element and its quality level shows a relationship in the mat density and percent asphalt elements. This relationship is not shown in the results for the air voids and VMA elements. There is a significant difference between the quality levels reported in the test elements which is not related to the weight given the element.

Figure 12. Quality Levels by Test Element

Figure 13. 2000 to 2003 Quality Levels by Test Element

5.7 Test Element Quality Levels For Gradings S & SX 2000 through 2003

The quality level information by year for each of the test elements is separated into gradings S and SX and presented in Table 5. Figures 14 to 17 graphically present the quality level information for each element. The results for grading SX are slightly below that of S but the differences in most cases is relatively small. Only seven projects have been completed which used grading SX. Four projects were completed in 2002. Only three were completed in 2003. The number of evaluated projects is too small for significant analysis. No conclusions on the difference between the two gradings should be made until more data is available.

Table 7. Review of Test Elements – Gradings S & SX

		Percei	nt Asph	alt		
V	0	D	T	-	Quality	Pay
Year	Grading	Processes	Tests	Tons	Level	Factor
2000	S	31	644	638,915	91.565	1.01618
2001	S	5	159	158,375	94.376	1.03610
2002	S	35	553	516,489	89.838	1.01441
	SX	10	308	300,822	89.369	1.00103
2003	S	20	444	435,853	90.942	1.01575
	sx	6	119	118,685	82.441	0.96218
		•	VMA			_
Vaan	Cundina	Dunganan	T4-	Tama	Quality Level	Pay
Year	Grading	Processes	Tests	Tons	Levei	Factor
2000	S	31	644	638,914	97.072	1.04344
2001	S	5	159	158,375	98.510	1.05412
2002	S	34	550	512,489	94.296	1.02513
	SX	10	308	300,822	93.672	1.02046
2003	S	20	448	439,831	95.841	1.04129
	SX	7	120	119,685	76.402	0.91389
		Air	Voids			
Year	Grading	Processes	Tests	Tons	Quality Level	Pay Factor
2000	S	29	623	617,914	89.931	1.00546
2001	S	5	159	158,375	93.581	1.03033
2002	S	34	536	512,489	87.872	0.99643
	SX	10	308	300,822	89.036	0.99812
2003	S	20	447	438,866	93.321	1.03026
	SX	7	120	119,685	81.922	0.96742

Mat Density

Year	Grading	Processes	Tests	Tons	Quality Level	Pay Factor
2000	S	31	1,232	609,582	92.145	1.01344
2001	S	5	315	157,375	95.661	1.03911
2002	S SX	39 8	1,048 465	517,946 229,660	93.859 91.619	1.03064 1.00767
2003	s sx	20 4	849 211	411,331 103,757	93.782 92.875	1.02741 1.02070

Figure 14. Percent Asphalt Quality Levels – Gradings S & SX

Figure 15. VMA Quality Levels – Gradings S & SX

Figure 16. Air Voids Quality Levels – Gradings S & SX

Figure 17. Mat Density Quality Levels – Gradings S & SX

5.8 Joint Density Test Information

Joint density testing was incorporated into the calculations for I/DP with the release of the Revision to Sections 105 and 106 dated December 20, 2002. Fourteen projects were evaluated that contained the joint density specification. The joint density testing was waived on one of these projects. The results for all of the projects are displayed in Table 8.

Table 8. Joint Density Test Information – Gradings S & SX

Joint Density

Grading	Projects	Processes	Tests	Tons	Quality Level	Pay Factor
S	10	16	211	386,132	85.509	0.98425
SX	3	3	56	102,289	93.654	1.02815
Totals	13	19	267	488,421	87.215	0.99344

The overall average pay factor for joint density is just slightly under the neutral amount of 1.0. Grading SX has higher quality levels as compared to grading S but only three projects were constructed using SX. At this early stage there does not seem to be any problems with the joint density test element or specification. The results represent the first projects that have been constructed in which joint density testing has been a requirement. The quality levels and pay factors are creditable for a new specification. As more projects are constructed with the specification it is expected that the results will increase.

5.9 Recap Reports, 2000 through 2003 Data

A series of recap reports for the information contained in this report 2000 through 2003 is presented in Appendix A. For each of the test elements, excluding joint density, a report is presented in which the data is grouped by grading and then by year. The region's results are given for each year. The weighted averages are calculations for: price, quality level, pay factor, mean to target value, standard deviation, and standard deviation minus the V factor. These reports help evaluate the data by individual region but for the most part the number of projects included in the data groupings is too small to make conclusive comparisons.

5.10 Yearly Reports 2000 though 2003

A series of detailed reports are presented in Appendices B, C, D, & E that cover the test These are detailed reports which contain all of the data and information by year. calculations not contained in previous reports. Specific information about each process can be found in these reports. Report number 5 details the project information by region and displays the total bid amount and the plan quantity. The Project Data report, report number 6, contains all of the test data for each project broken out by mix design and process number. This is a complete listing of the reported tests associated with the project. Calculations are displayed for: target value, mean, mean to target value, standard deviation, and standard deviation minus the V value. The Calculated Pay Factor Composite and Incentive/Disincentive Payment information is also detailed. This is the best report to review when concerned about any single project. The Calculated Pay Factor Composite and Incentive/Disincentive Payment information by region are presented in report 7. For each region the number of projects and tons of material are displayed. The maximum, minimum, and average values are given for both CPFC and I/DP. Reports 8 through 11 detail the asphalt content, VMA, air voids & mat density elements by year. These reports contain all of the process information that is included in the evaluations. Calculations are given for each process which show the target value, mean, mean to target value, standard deviation, and standard deviation minus the V value. The reports are grouped by grading and grading results are calculated which show the best, worst and weighted average values. At the end of the report the overall results are given for the year showing the best, worst, and weighted averages.

All of the joint density information is detailed in Report 12, Appendix F. All but one of the projects was constructed in 2003. All of the project data was combined in this report. Calculations are given for each process that show the target value, mean, mean to target value, standard deviation, and standard deviation minus the V value. The reports are grouped by grading and grading results are calculated which show the best, worst and weighted average values. At the end of the report the overall results are given showing the best, worst, and weighted averages.

6.0 SUMMARY

The specification and the projects are performing reasonably well. No major problem areas can be found in reviewing the project data. No definite trends can be seen in the data showing marked improvements or declines in quality. Most of the values reviewed are within a small range of numbers at acceptable levels. More projects received incentive payments as compared to disincentive payments. The average Calculated Pay Factor Composite over the four-year period is 1.00660. The year 2001 showed the best overall results with a CPFC of 1.04109 but only three projects were included in that evaluation. The worst results were in 2002 which showed a 1.2% average disincentive. The average quality levels in the VMA and mat density elements over the four-year period are at high levels. 94.66 and 93.17 respectively. The results in the asphalt content and air voids elements are approximately 90 percent. The yearly quality levels reported in the individual elements showed good results. The lowest reported value is 88.303 in the Air Voids element for 2002. This relates to an average pay factor just under the 1.0 value. All of the other pay factors are above the 1.0 mark showing that incentive payments have been paid. The mean to target value calculations show that the material is being produced close to the midpoint of the specification, calculated values approaching zero. Producing material close to the target value increases the likelihood that the material will be within specification limits. standard deviations for the test results show that the material being produced is below the variation of the historical data, negative values in the standard deviation minus V value calculations. The difference in the quality levels between the test elements appeared high in the first two years. This difference has decreased in 2003 and now appears at reasonable intervals. Thirteen projects were reviewed that contained the joint density specification. The average pay factor for these projects was just under 1.0. This is a respectable level considering that these are the first projects constructed using the specification. expected that the results will increase as more projects are constructed using the specification.

7.0 UPDATES AND CONTACT

The QC database will be updated as additional project data is received. Project data that was received after the cut-off date was not able to be included in this report. If you have any questions concerning this report please contact Eric Chavez at 303 757-9308, Eric.Chavez@dot.state.co.us. If you find any errors in the project data please report them to Eric Chavez.

REFERENCES

- 1. Hot Bituminous Pavement Gradation Acceptance Review of QC/QA Data 2000 to 2002, (March 2004, Eric Chavez, Colorado Department of Transportation, 4201 East Arkansas Ave, Denver, CO 80222), Report No. CDOT-DTD-R-2004-04.
- 2. Standard Recommended Practice for *Acceptance Sampling Plans for Highway Construction*, AASHTO Designation: R9-97 (2000)

Appendix A

Recap Reports for Project Data 2000 through 2003

Report 1	Asphalt Content – Recap by Grading/Year/Region A -	1
Report 2	VMA – Recap by Grading/Year/Region A -	3
Report 3	Air Voids – Recap by Grading/Year/Region A -	5
Report 4	Mat Density – Recap by Grading/Year/Region A -	7

Asphalt Content - Recap by Grading/Year/Region, VA

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2003.

Processes with less than 3 tests not included.

S						Wei	ghted A	verage		
	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDe - V
2000										
Region: 1	2	12,317	16	\$49.20	85.903	1.01275	0.16	0.129	0.200	-0.07
Region: 2	8	282,442	283	\$28.14	93.610	1.02287	0.06	0.144	0.200	-0.05
Region: 4	20	324,315	325	\$41.61	90.684	1.01407	0.09	0.143	0.200	-0.05
Region: 6	1	19,841	20	\$46.00	80.347	0.95762	0.08	0.220	0.200	0.02
Totals 2000	31	638,915	644	\$35.94	91.565	1.01618	0.08	0.146	0.200	-0.0
2001										
Region: 2	4	104,496	105	\$30.74	92.539	1.02636	0.05	0.160	0.200	-0.04
Region: 6	1	53,879	54	\$37.50	97.940	1.05500	0.01	0.131	0.200	-0.06
Totals 2001	5	158,375	159	\$33.04	94.376	1.03610	0.04	0.150	0.200	-0.0
2002										
Region: 1	4	16,978	24	\$36.39	76.824	0.97074	0.10	0.211	0.200	0.0
Region: 2	11	165,298	192	\$33.80	90.552	1.01972	0.10	0.155	0.200	-0.04
Region: 4	7	154,411	156	\$36.40	90.461	1.01519	0.06	0.165	0.200	-0.0
Region: 6	13	179,802	181	\$38.86	89.875	1.01298	0.07	0.160	0.200	-0.0
Totals 2002	35	516,489	553	\$36.42	89.838	1.01441	0.08	0.162	0.200	-0.0
2003										
Region: 2	11	301,983	306	\$31.56	90.174	1.00928	0.09	0.155	0.200	-0.04
Region: 6	9	133,870	138	\$36.77	92.674	1.03035	0.08	0.144	0.200	-0.0
Totals 2003	20	435,853	444	\$33.16	90.942	1.01575	0.09	0.152	0.200	-0.04
Totals Grading: S						Weig	hted Av	rerage		
J	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDe - V
		,749,632	1800	\$35.13	91.154	1.01735		0.152	0.200	-0.04

ng: SX						Wei	ghted A	verage		
	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	StDev - V
2002										
Region: 1	2	71,404	73	\$33.86	97.826	1.05314	0.04	0.124	0.200	-0.076
Region: 3	6	109,123	111	\$32.23	86.380	0.99652	0.06	0.190	0.200	-0.010
Region: 5	1	113,295	117	\$31.30	87.504	0.97305	0.02	0.195	0.200	-0.005
Region: 6	1	7,000	7	\$42.75	79.880	0.99276	0.11	0.214	0.200	0.014
Totals 2002	10	300,822	308	\$32.51	89.369	1.00103	0.04	0.177	0.200	-0.023
2003										
Region: 2	3	40,000	40	\$32.52	77.711	0.92887	0.11	0.195	0.200	-0.005
Region: 3	3	78,685	79	\$35.92	84.846	0.97912	0.03	0.208	0.200	0.008
Totals 2003	6	118,685	119	\$34.77	82.441	0.96218	0.05	0.204	0.200	0.004
Totals Grading: S.	X					Weig	hted A	verage		
J	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
	16	419,507	427	\$33.15	87.409	0.99004	0.05	0.184	0.200	-0.016
alt Content - Totals	1/1/2000 to	12/31/2	003.							
						Weig	hted A	verage		
	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
	107 2	,169,139	2,227	\$34.75	90.430	1.01207	0.07		0.200	-0.042

VMA - Recap by Grading/Year/Region

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2003.

Processes with less than 3 tests not included.

Grading: S							Weigh	nted Av	erage:		
g. ~		Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	StDev - V
2000											
	Region: 1	2	12,317	16	\$49.20	100.000	1.04260	0.07	0.318	0.600	-0.28
	Region: 2	8	282,442	283	\$28.14	96.663	1.04642	0.35	0.448	0.600	-0.15
	Region: 4	19	324,314	325	\$41.61	98.265	1.04586	0.19	0.357	0.600	-0.243
	Region: 6	2	19,841	20	\$46.00	81.561	0.96184	0.51	0.669	0.600	0.06
Totals	2000	31	638,914	644	\$35.94	97.072	1.04344	0.27	0.406	0.600	-0.19
2001										,	
	Region: 2	4	104,496	105	\$30.74	99.151	1.05366	0.19	0.339	0.600	-0.26
	Region: 6	1	53,879	54	\$37.50	97.266	1.05500	0.21	0.514	0.600	-0.08
Totals	2001	5	158,375	159	\$33.04	98.510	1.05412	0.20	0.398	0.600	-0.20
2002				************	***************************************					-	
	Region: 1	4	16,978	24	\$36.39	98.666	1.03911	0.13	0.556	0.600	-0.04
	Region: 2	11	161,298	189	\$33.93	86.628	0.97825	0.32	0.646	0.600	0.04
	Region: 4	7	154,411	156	\$36.40	99.850	1.05231	0.16	0.320	0.600	-0.28
	Region: 6	12	179,802	181	\$38.86	95.993	1.04252	0.26	0.503	0.600	-0.09
Totals	2002	34	512,489	550	\$36.49	94.296	1.02513	0.25	0.495	0.600	-0.10
2003											
	Region: 2	11	303,983	308	\$31.56	95.497	1.03864	0.44	0.354	0.600	-0.246
	Region: 6	9	135,848	140	\$36.79	96.611	1.04721	0.32	0.477	0.600	-0.123
Totals	2003	20	439,831	448	\$33.18	95.841	1.04129	0.40	0.392	0.600	-0.20
Total	s Grading:	S					Weigh	ted Ave	erage:		
	J	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
		90	1,749,609	1,801	\$35.14	96.079	1.03850	0.29	0.428	0.600	-0.172

Frading: SX							Weigh	ited Ave	erage:		
_		Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	V	StDev - V
2002	, ,	0									
	Region: 1	2	71,404	73	\$33.86	99.734	1.05500	0.31	0.334	0.600	-0.26
	Region: 3	6	109,123	111	\$32.23	92.505	1.01961	0.39	0.481	0.600	-0.119
	Region: 5	1	113,295	117	\$31.30	90.584	0.99861	0.32	0.646	0.600	0.046
	Region: 6	1	7,000	7	\$42.75	100.000	1.03500	0.33	0.340	0.600	-0.260
Totals	2002	10	300,822	308	\$32.51	93.672	1.02046	0.34	0.505	0.600	-0.09
2003			· · · · · · · · · · · · · · · · · · ·								
	Region: 2	3	41,000	41	\$32.53	58.976	0.79556	1.12	0.268	0.600	-0.332
	Region: 3	4	78,685	79	\$35.92	85.482	0.97555	0.56	0.487	0.600	-0.113
Totals	2003	7	119,685	120	\$34.76	76.402	0.91389	0.75	0.412	0.600	-0.188
Total	s Grading:	SX					Weigh	ted Ave	erage:		
	J	Processes	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev
		17	420,507	428	\$33.15	88.756	0.99013	0.46	0.479	0.600	-0.12°
VMA	- Totals 1	/1/2000 to 1:	2/31/2003	-	····		,				
							Weigh	ted Ave	erage:		

Quality

Level

94.660

Price

\$34.76

Tests

Pay

1.02913

Mean

Factor to TV St. Dev.

Report	2
--------	---

StDev

- V

Processes

Tons

107 2,170,116 2,229

Air Voids - Recap by Grading/Year/Region

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2003.

Processes with less than 3 tests not included.

Grading: S						Weight	ed Aver	age:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	StDev - V
2000										
Region:	1 2	12,317	16	\$49.20	98.668	1.04260	0.39	0.416	0.600	-0.184
Region:	2 7	261,442	262	\$28.31	88.022	0.98700	0.33	0.627	0.600	0.027
Region:	4 19	324,314	325	\$41.61	90.750	1.01620	0.37	0.523	0.600	-0.077
Region:	6 1	19,841	20	\$46.00	96.268	1.05000	0.31	0.513	0.600	-0.087
Totals: 2000	29	617,914	623	\$36.28	89.931	1.00546	0.35	0.564	0.600	-0.036
2001										
Region:	2 4	104,496	105	\$30.74	93.538	1.03061	0.27	0.531	0.600	-0.069
Region:	6 1	53,879	54	\$37.50	93.666	1.02977	0.47	0.482	0.600	-0.118
Totals: 2001	5	158,375	159	\$33.04	93.581	1.03033	0.34	0.514	0.600	-0.086
2002										
Region:	1 4	16,978	24	\$36.39	77.461	0.96446	0.32	0.893	0.600	0.293
Region:	2 11	161,298	175	\$33.91	79.050	0.93359	0.41	0.734	0.600	0.134
Region:	4 7	154,411	156	\$36.40	95.054	1.03362	0.19	0.553	0.600	-0.047
Region:	6 12	179,802	181	\$38.86	90.601	1.02388	0.27	0.631	0.600	0.031
Totals: 2002	34	512,489	536	\$36.48	87.872	0.99643	0.29	0.649	0.600	0.049
2003				,,						
Region:	<i>2</i> 11	303,983	308	\$31.56	93.181	1.02815	0.28	0.533	0.600	-0.067
Region:	6 9	134,883	139	\$36.78	93.637	1.03502	0.33	0.543	0.600	-0.057
Totals: 2003	20	438,866	447	\$33.17	93.321	1.03026	0.30	0.536	0.600	-0.064
Totals Gradi	ng: S	1.40				Weighte	d Avera	age:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
	88	1,727,644	1765	\$35.25	90.516	1.01136	0.32	0.578	0.600	-0.022

ding: SX						Weight	ed Aver	age:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	StDev - V
2002						· · ·	·			
Region: 1	2	71,404	73	\$33.86	98.602	1.05500	0.20	0.423	0.600	-0.177
Region: 3	6	109,123	111	\$32.23	83.014	0.97334	0.45	0.689	0.600	0.089
Region: 5	1	113,295	117	\$31.30	88.851	0.98425	0.01	0.757	0.600	0.157
Region: 6	1	7,000	7	\$42.75	88.339	1.02885	0.03	0.818	0.600	0.218
Totals: 2002	10	300,822	308	\$32.51	89.036	0.99812	0.22	0.655	0.600	0.055
2003								· ·		
Region: 2	3	41,000	41	\$32.53	80.616	0.96658	0.87	0.441	0.600	-0.159
Region: 3	4	78,685	79	\$35.92	82.602	0.96786	0.38	0.786	0.600	0.186
Totals: 2003	7	119,685	120	\$34.76	81.922	0.96742	0.55	0.668	0.600	0.068
Totals Grading.	: SX					Weight	ed Avera	age:		
_	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
	17	420,507	428	\$33.15	87.011	0.98939	0.31	0.658	0.600	0.058
Air Voids - Totals	1/1/2000) to 12/31/20	03.				·			
						Weighte	d Avera	ige:		
	Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
	105	2,148,151	2,193	\$34.84	89.830	1.00706	0.32	0.593	0.600	-0.007

Mat Density - Recap by Grading/Year/Region, VA

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2003.

Processes with less than 3 tests not included.

Compaction Test Sections not included.

Grading: S							Wei	ghted Av	erage:		
		Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
20	00										
	Region: 1	1 2	12,317	31	\$49.20	94.174	1.04331	0.458	0.989	1.100	-0.11
	Region: 2	2 8	281,442	565	\$28.13	91.476	1.00083	0.695	0.917	1.100	-0.183
	Region: 4	19	295,982	596	\$42.09	92.412	1.02161	0.724	0.868	1.100	-0.232
	Region: (5 2	19,841	40	\$46.00	96.410	1.05194	0.386	0.892	1.100	-0.208
Tota	als 2000	31	609,582	1,232	\$35.92	92.145	1.01344	0.694	0.894	1.100	-0.206
20	01										
	Region: 2	? 4	103,496	207	\$30.74	93.956	1.02823	0.550	0.830	1.100	-0.270
	Region: (5 1	53,879	108	\$37.50	98.934	1.06000	0.160	0.777	1.100	-0.323
Tota	uls 2001	5	157,375	315	\$33.06	95.661	1.03911	0.417	0.812	1.100	-0.288
20	02										
	Region: I	1 4	16,978	41	\$36.39	92.332	1.03273	0.530	0.856	1.100	-0.244
	Region: 2	? 12	163,762	331	\$33.49	94.888	1.03650	0.524	0.820	1.100	-0.280
	Region: 4	9	154,411	318	\$36.40	91.721	1.01304	0.572	0.921	1.100	-0.179
	Region: (14	182,795	358	\$38.95	94.884	1.04006	0.442	0.809	1.100	-0.291
Tota	als 2002	39	517,946	1,048	\$36.38	93.859	1.03064	0.509	0.847	1.100	-0.253
20	03										
	Region: 2	? 11	275,983	557	\$31.81	92.819	1.02173	0.569	0.897	1.100	-0.203
	Region: 6	9	135,348	292	\$36.81	95.746	1.03899	0.235	0.838	1.100	-0.262
Tota	uls 2003	20	411,331	849	\$33.45	93.782	1.02741	0.459	0.878	1.100	-0.222
Totals - Grad	ling: S						Weig	ghted Av	erage:		
		Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
		95	1,696,234	3,444	\$35.20	93.392	1.02446	0.555	0.868	1.100	-0.232

Grading: S	\boldsymbol{X}							Wei	ghted Av	erage:		
			Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
2	002			· · · · · · · · · · · · · · · · · · ·								
		Region: 1	1	37,338	76	\$36.05	95.177	1.03804	0.317	0.972	1.100	-0.128
		Region: 3	4	76,715	151	\$32.14	88.584	0.99363	0.435	1.177	1.100	0.077
		Region: 5	1	107,489	221	\$31.30	92.700	1.00664	0.149	1.108	1.100	0.008
		Region: 6	2	8,118	17	\$42.75	89.610	1.01415	1.552	0.313	1.100	-0.787
To	otals	2002	8	229,660	465	\$32.76	91.619	1.00767	0.322	1.081	1.100	-0.019
2	003											
		Region: 2	1	27,000	54	\$32.41	95.771	1.04500	0.585	0.825	1.100	-0.275
_		Region: 3	3	76,757	157	\$35.93	91.857	1.01215	0.479	1.044	1.100	-0.056
To	tals	2003	4	103,757	211	\$35.01	92.875	1.02070	0.507	0.987	1.100	-0.113
Totals - Gra	ıdin	g: SX						Weig	ghted Av	erage:		
			Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
			12	333,417	676	\$33.46	92.010	1.01172	0.379	1.052	1.100	-0.048
Mat Densit	y - T	Totals 1/	1/2000 to	12/31/20								
								Wei	ghted Av	erage:		
			Process	Tons	Tests	Price	Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
			107	2,029,651	4,120	\$34.91	93.165	1.02237	0.526	0.898	1.100	-0.202

Appendix B

Reports for 2000 Projects

Report 5	Project Listing by Region/Subaccount	B - 1
Report 6	Project Data	B - 2
Report 7	Calculated Pay Factor Composite and I/DP by Region	B - 15
Report 8	Asphalt Content – Process Information	B - 17
Report 9	VMA – Process Information	B - 19
Report 10	Air Voids – Process Information	B - 21
Report 11	Mat Density Process Information	B - 23

		•	

Project Listing by Region/Subaccount - Voids Acceptance

Projects with Bid Dates from 1/1/2000 to 12/31/2000.

Region	: 1						
s	Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quan
	12312	STA 1192-008	Black Hawk - North	45	02/24/00	\$2,713,984.00	12,307
_	1	Number of Pro	iects 1	Total Qu	antity 12,3	07	
Region:	: 2						
S	Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quan
-	12599	NH 1603-014	SH 10 & 160, Walsenburg	20	01/06/00	\$2,959,600.17	69,398
•	12685	NH 0505-033	US 50 West of Granada	32	12/07/00	\$2,397,947.45	69,821
	13051	NH 050A-005	W. McCulloch to Baltimore	32	01/13/00	\$2,815,677.70	49,323
1	13440	NH 0242-033	Hwy 24 Manitou	49	12/07/00	\$4,231,645.82	107,295
	I	Number of Pro	iects 4	Total Qu	antity 295,	837	
Region:	: 4						
S	Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quan
1	11990	STA 0362-019	Jct SH 71 East	14	11/16/00	\$5,330,589.10	99,098
1	12401	STA C030-02	SH 52 & 85 Weld Co. FY 01	14	11/09/00	\$6,048,484.40	101,694
1	12402	STR 0343-01	SH 34	14	01/06/00	\$3,693,844.43	65,592
1	13009	NH 0343-020	Brush to Akron	14	05/18/00	\$8,022,767.29	69,629
	Λ	Number of Proj	iects 4	Total Qu	antity 336,	013	
Region:	: 6						
s	Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quan
1	12282	IM 0252-318	I-25, US 6 N of 15 St	10	02/10/00	\$2,489,911.80	19,661
	Λ	Number of Proj	ects 1	Total Qu	antity 19,6	61	
Totals	s: Proje	cts with Bid Date	s from 1/1/2000 to 12/31/200	00.			
	.,-						

Subacco	unt: 1	1990	STA 0	362-019	Jct SH 71	East			Regio	n: 4	Si	upplier:	14
Mix Desi	gn No	102396a		Process No	o 1 Grad	ding S	()	PG	Pr	ice Per 1	Fon \$42.0	00	
	Tests	Tons	Quality Level	Pay Factor									
AC	43	42,387	88.138	0.99290	(\$1,264.58)	5.000	4.892	0.108	0.160	0.200	-0.040		٥
Density	85	42,387	99.335	1.06000	\$42,726.10			0.779	0.501	1.100	-0.599		_
VMA	43	42,387	99.995	1.05500	\$9,791.40	13.500	13.491	0.009	0.325	0.600	-0.275		φυ.υυ
Air Voids	43	42,387	96.099	1.04864	\$34,633.27	3.500	3.363	0.137	0.576	0.600	-0.024		0
		,		I/DP:	\$85,886.19						2\	/ Adj.	\$0.00
———— Mix Desig	gn No	121418B		Process No	o 1 Grad	ding S	()	PG	Pr	ice Per 1	on \$38.0	00	
	Tests	Tons	Quality Level	•	I/DP	TV	Mean		St Dev	. V		Oth	ner
AC	40	40,000	93.767	1.03334	\$5.067.50	5.200	5.195	0.005	0.163	0.200	-0.037		^
Density	53	26,500	97.379										_
VMA	40	40,000	99.898	1.05500	\$8,360.00	14.300	14.107	0.193	0.345	0.600	-0.255		\$0.00
Air Voids	40	40,000	94.678	1.03949	•	4.000	3.692	0.308	0.552	0.600	-0.048		13,000
		,		I/DP:							2\	⁄ Adj.	
Mix Desi	gn No	121418B	ı	Process No	o 2 Grad	ding S	0	PG	Pr	ice Per 1	on \$38.0	00	
	Tests	Tons	Quality Level	•	I/DP	TV	Mean		St Dev	. v		Oth	ier
AC	15	14,105	80.204								-		
Density	30	14,605	98.884										-
VMA	15	14,105	95.280		•			0.553	0.400				\$0.00
Air Voids	15	14,105	60.243	0.81847	, ,	4.000	2.973	1.027	0.654	0.600			0
		,					_,,,,,					_	_
Totals	: 1199	00		Tests	Tons	I/DP							. ,
			AC		•								
		l	Density	168	96,492								
		A:	VMA r Voids	98 98	96,492 96,492	\$20,69 \$19,72			Adj \$0.00				
			Density	90	30,432	φ15,/2	.5.05	•	φυ.υυ				
			-	Quant	99,098 P	roject l	DP ¢1	19,561.18		CPFC	1.03117		
			, idi		33,030	. Ojeet II	· · · · ·	10,501.10		0110	1.00117		

Subacco	unt: 12	2282	IM 02	52-318	I-25, US	6 N of 1.	5 St		Regio	on: 6	Si	upplier:	10
Mix Desig	gn No	1058511		Process No	o 1 Gra	ding S	()	PG .	Pr	ice Per	Fon \$46.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	20	19,841	80.347	0.95762	(\$3,867.89)	5.100	5.019	0.081	0.220	0.200	0.020	CTS	0
Density	10	5,000	93.748	1.04284	\$3,941.12		93.350	0.650	0.916	1.100	-0.184	Tons I/DP	
VMA	17	17,000	78.479	0.95129	(\$3,808.85)	15.400	15.988	0.588	0.755	0.600	0.155	PF 1.0	\$0.00
Air Voids	20	19,841	96.268	1.05000	\$18,253.72	4.100		0.311	0.513	0.600	-0.087	Tons	0
		,		I/DP:	\$14,518.10	-					2\	/ Adj.	\$0.00
Mix Desig	gn No	1058511		Process No	o 2 Gra	nding S	()	 PG -	Pr	ice Per î	Ton \$46.0		
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	10363	10113	Level	i actor	\$0.00		moun	10 11	Ot DUV	0.200	- •	CTS	
Density	30	14,841	97.307	1.05500	\$0.00 \$15,019.09	94 000	93.703	0.297	0.884	1.100	-0.216	Tons	0
VMA	30	14,041	31.301	1.05500	\$0.00	34.000	93.703	0.231	0.004	0.600	-0.210	I/DP	\$0.00
Air Voids					\$0.00					0.600		PF 1.0	^
All Volus				UDD.		-				0.600	21	Tons / Adj.	0 \$0.00
				I/DP:	\$15,019.09								Ψ0.00
Mix Desig	gn No	1058512	,	Process No) 1	ding S	()	PG	Pr	ice Per 1	Ton \$46.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC			2010.	. 40101	\$0.00					0.200	•	CTS	
Density		0			\$0.00	94.000				1.100		Tons	0
VMA	3	2,841	100.000	1.02500	\$326.71		16.467	0.033	0.153	0.600	-0.447	I/DP	\$0.00
Air Voids	,	2,041	100.000	1.02000	\$0.00		10.407	0.000	0.100	0.600	-0.4-11	PF 1.0 Tons	0
All Volus				I/DP:	\$326.71	-				0.000	2\	/ Adj.	\$0.00
				IIDF.	φ320.71						-	, rug.	******
Totals	: 1228	32		Tests	Tons	I/DP							
			AC	20	19,841	(\$3,86	67.89)	СТ	8 I/DP				
			Density	40	19,841	\$18,96			\$0.00				
			VMA	20	19,841	(\$3,48	,		Adj				
			ir Voids Density	20	19,841	\$18,25	3.72		\$0.00				
			Plan	Quant	19,661 F	Project I	/DP \$	29,863.9	0	CPFC	1.03272		

Subacco	unt: 12	2312	STA 1	192-008	Black H	lawk - No	rth		Regio	n: 1	Si	upplier:	45
Mix Desig	ın No	97313A	\ 1	Process No) 1 G	rading S	()	PG	Pr	ice Per	Fon \$53.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	6	2,951	86.390	1.02445	\$382.4	5.300	5.213	0.087	0.194	0.200	-0.006	CTS	0
Density	12	2,951		1.03363	\$2,103.77	7 94.000	93.592	0.408	1.130	1.100	0.030	Tons	0
VMA	6	2,951		1.03500	\$547.4		16.533	0.067	0.367	0.600	-0.233	I/DP	\$0.00
Air Voids	6	2,951		1.03500	\$2,189.64		4.348	0.348	0.530	0.600		PF 1.0 Tons	0
				I/DP:	\$5,223.23	 3					2\	⁄ Adj.	\$0.00
Mix Desig	n No	97313E	3 /	Process No	1 <i>G</i> i	rading S	()	PG	Pr	ice Per 1	Fon \$48.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	τv	Mean	Mean to TV	St Dev.	. v	St Dev.	Oth	er
AC	10	9,366		1.00906	\$407.34		5.585	0.185	0.108	0.200	-0.092	CTS	
Density	19	9.366		1.04636	\$8,336.23		93.526	0.474	0.944	1.100	-0.156	Tons	0
VMA	10	9.366		1.04500	\$2,023.06		16.570	0.070	0.302	0.600	-0.298	I/DP	\$0.00
Air Voids	10	9,366		1.04500	\$8,092.22		3.596	0.404	0.380	0.600	-0.220	PF 1.0 Tons	0
		,	•••	I/DP:	\$18,858.8	_	0.000	0.101	0,000	0.000		Adj.	\$0.00
Totals	: 1231	2		Tests	Tons	I/DP							
		_	AC	16	12,317	\$78	9.75	CTS	I/DP				
			Density	31	12,317	\$10,44	0.00	;	\$0.00				
			VMA	16	12,317	\$2,57	0.47	2V	Adj				
			Air Voids It Density	16	12,317	\$10,28	1.86	;	\$0.00				
			Plan	Quant	12,307	Project I/	DP \$	24,082.08	3	CPFC	1.03974		

Subacco	unt: 12	2401	STA (C030-020	SH 52 &	85 Weld	Co. F	7 01	Regio	on: 4	S	upplier:	14
Mix Desi	gn No	109888	ı	Process N	o 1 Gr	ading S	()	PG	Pi	ice Per	Ton \$38.	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	τv	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	6	6,000	91.324	1.03500	\$798.00	5.200	5.100	0.100	0.154	0.200	-0.046	CTS	^
Density	12	6,000	99.759	1.04500	\$4,104.00		91.192	2.808	0.757	1.100	-0.343	Tons	0
VMA	6	6.000	100.000	1.03500	\$798.00	14.000	14.050	0.050	0.176	0.600	-0.424	I/DP	\$0.00
Air Voids	6	6,000	44.770	0.75557	(\$22,291.59		2.817	1.283	0.585	0.600	-0.015	PF 1.0 Tons	0
		0,000		I/DP:	(\$16,591.59	_	2.017	1.200	0.000	0.000		/ Adj.	\$0.00
Mix Desig	an No	109889		Process N	o 1 Gr	ading S	0	 PG	Pı	ice Per	Fon \$28.0		
•	Tests		Quality	Pay		_	•	Mean			St Dev.	Oth	er
40		Tons	Level	Factor	I/DP	TV	Mean	to TV	St Dev		- V	CTS	
AC	17	16,890	93.540	1.03928	\$1,857.45	5.000	5.050	0.050	0.161	0.200	-0.039	Tons	0
Density	17	8,242	94.163	1.04237	\$3,910.89		93.265	0.735	0.825	1.100	-0.275	I/DP	\$0.00
VMA	17	16,890	100.000	1.05000	\$2,364.60		14.312	0.088	0.245	0.600	-0.355	PF 1.0	
Air Voids	17	16,890	87.100	1.00476	\$901.06	4.100 -	3.288	0.812	0.344	0.600	-0.256	Tons	0
				I/DP:	\$9,034.00						2\	/ Adj.	\$0.00
Mix Desig	gn No	131604	ı	Process N	o 1 Gra	ading S	()	- G	Pr	ice Per 1	on \$45.7	75	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	57	56,840	91.184	1.01065	\$2,770.37	5.000	4.878	0.122	0.132	0.200	-0.068	CTS	0
Density	114	56,840	96.136	1.04421	\$45,984.64	94.000	93.614	0.386	0.896	1.100	-0.204	Tons I/DP	
VMA	57	56,840	99.746	1.05500	\$14,302.36	14.000	13.726	0.274	0.341	0.600	-0.259	PF 1.0	\$0.00
Air Voids	57	56,840	98.114	1.05500	\$57,209.46	4.000	3.802	0.198	0.483	0.600	-0.117	Tons	0
				I/DP:	\$120,266.83	-					2\	/ Adj.	\$0.00
								··					
Totals	: 1240	1		Tests	Tons	I/DP						 	
			AC	80	79,730	\$5,42			I/DP				
			Density	143	71,082	\$53,99			\$0.00				
			VMA	80	79,730	\$17,46			Adj				
			ir Voids Density	80	79,730	\$35,81	8.93		\$0.00				
			Plan	Quant	101,694	Project I/	DP \$1	12,709.24	4	CPFC	1.03414		

Subaccount: 12402

STR 0343-017

SH 34

Region: 4

Supplier: 14

Mix Desig	gn No	123705	1	Process No	1 Grad	ding S	(96) F	PG	Pric	ce Per 1	Ton \$36.2	25	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC	23	22,656	80.021	0.95113	(\$4,013.37)	5.000	5.185	0.185	0.136	0.200	-0.064	CTS	C
Density	47	22,656	78.598	0.91833	(\$26,829.79)	94.000	92.862	1.138	1.079	1.100	-0.021	Tons I/DP	\$0.00
VMA	23	22,656	99.957	1.05000	\$4,106.40	15.000	14.900	0.100	0.371	0.600	-0.229	PF 1.0	φυ.υι
Air Voids	23	22,656	94.092	1.04100	\$13,467.64	4.000	4.366	0.366	0.541	0.600	-0.059	Tons	0
				I/DP:	(\$13,269.12)						2 V	/ Adj.	\$0.00
Mix Desig	gn No	123705a	ı	Process No	1 Grad	ding S	(96) F	èG	Pric	e Per 1	Ton \$36.2	25	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC	12	12,481	79.749	0.97263	(\$1,238.15)	5.150	5.313	0.163	0.162	0.200	-0.038	CTS	0
Density	24	12,481	90.608	1.01992	\$3,605.50	94.000	93.592	0.408	1.144	1.100	0.044	Tons I/DP	\$0.00
VMA	12	12,481	99.282	1.04500	\$2,035.96	15.000	14.708	0.292	0.419	0.600	-0.181	PF 1.0	Ф 0.0С
Air Voids	12	12,481	97.879	1.04500	\$8,143.85	4.000	3.898	0.102	0.566	0.600	-0.034	Tons	0
				I/DP:	\$12,547.16						2V	Adj.	\$0.00
Mix Desig	n No	123705b	F	Process No	1 Grad	ding S	(96) F	·G	Pric	e Per 1	on \$36.2	25	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	5	4,963	94.460	1.03000	\$539.73	5.150	5.212	0.062	0.168	0.200	-0.032	стѕ	
Density	8	4,185	81.072	0.99212	(\$477.91)		93.062	0.938	1.187	1.100	0.087	Tons	0
VMA	5	4,963	71.628	0.96966	(\$545.83)	15.000	14.240	0.760	0.709	0.600	0.109	I/DP	\$0.00
Air Voids	5	4,963	82.128	1.01595	\$1,147.84	4.000	3.530	0.470	0.769	0.600	0.169	PF 1.0 Tons	0
				I/DP:	\$663.83						2V	Adj.	\$0.00
Mix Desig	ın No	15100	F	Process No	1 Grad	ding S	(96) F	·G	Pric	e Per 1	on \$41.0	10	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC	7	6,975	99.685	1.03500	\$1,000.91	5.100	5.177	0.077	0.110	0.200	-0.090	CTS	0
Density	14	6,975	77.935	0.95580	(\$5,055.53)	94.000	92.764	1.236	0.982	1.100	-0.118	Tons I/DP	\$0.00
VMA	7	6,975	100.000	1.03500	\$1,000.91	14.300	14.400	0.100	0.370	0.600	-0.230	PF 1.0	φυ.υυ
Air Voids	7	6,975	83.806	1.01073	\$1,227.76	4.200	3.669	0.531	0.671	0.600	0.071	Tons	0
				I/DP:	(\$1,825.95)						2V	Adj.	\$0.00
Mix Desig	ın No	15100a	F	Process No	1 Grad	ling S	(96) F	G	Pric	e Per T	on \$41.0	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC	13	13,193	95.745	1.04500	\$2,434.11	5.100	5.108	0.008	0.158	0.200	-0.042	CTS	
Density	26	13,193	85.469	0.98511	(\$3,221.69)		93.454	0.546	1.273	1.100	0.173	Tons	0
VMA	13	13,193	96.054	1.04500	\$2,434.11		14.154	0.146	0.605	0.600	0.005	I/DP	\$0.00
												PF 1.0	•
Air Voids	13	13,193	62.472	0.84803	(\$32,881.32)	4.200	3.295	0.905	0.883	0.600	0.283	Tons	0

_	ın No	15100b	1	Process No	o 1 Gra	ding S	(96) F	PG	Pri	ce Per 1	Fon \$41.0	00	
Tests Tons Cauality Pay Level Factor I/DP TV Mean Me	Oth	er											
Density	10	5,000	Tons										
VMA	5	5,000	100.000	1.03000	\$615.00	14.300	13.940	0.360	0.305	0.600	-0.295		Ф О.О
Air Voids	5	5.000	59.634		(\$8,322,40)	4.200	3.050	1.150	0.184	0.600	-0.416		c
		.,									2\		\$0.00
Mix Desig	n No	15100c		Process No	o 1 Grad	ding S	(96) F	PG	Pri	ce Per 1	Fon \$41.0	00	
	Toolo	Tono	•	•	I/DB	т.	Maan		C4 Day	v		Oth	er
AC 5 5,000 95,344 1,03000 \$615,000 5,000 93,770 0,230 1,495 1,100 0,395 WMA 5 5,000 100,000 1,03000 \$615,000 14,300 13,940 0,360 0,305 0,600 -0,245 PMIX Design No 15100c Process No 1 Grading S (96) PG Price Per Ton \$41,00 Pmistry 17 9,024 83,661 0,98431 (\$8,324,40) 1,000 1,04000 \$1,479,94 1,4300 14,211 0,089 0,310 0,500 -0,290 PMIX Design No 15100c Process No 1 Rest Tons WMA 9 9,024 100,000 1,04000 \$1,479,94 1,4300 14,211 0,089 0,310 0,500 0,023 WMA 9 9,024 100,000 1,04000 \$5,5919,74 1,4300 14,211 0,089 0,310 0,500 0,023 WMA 9 9,024 100,000 1,04000 \$5,919,74 1,4300 14,211 0,089 0,310 0,500 0,020 0,000 0,0							_	CTS					
	Tons	C											
•		•			• • • •							I/DP	\$0.00
	-	•			• •								_
Air Voids	9	9,024	99.602	1.04000	\$5,919.74	4.200	3.707	0.493	0:327	0.600			C
				I/DP:	\$6,575.55						2\	/ Adj.	\$0.00
Totals	: 1240)2		Tests	Tons	I/DP							
			-		•	• •	•						
									•				
			Air Vaide	7/	74 292								
				7-7	14,202	(\$11,29	0.09)	•	Φ U.UU				
			t Density										
		Join	t Density Plan	Quant	65,592 P					CPFC	0.98801		
c	'ommei	Join	t Density Plan	Quant	65,592 P	roject I/	DP (\$:	34,248.4	7)		0.98801		
		Join nts: Fin	t Density Plan al quantity	Quant not equa	65,592 P	roject I/	DP (\$:	34,248.4	7)			upplier: 1	20
Subaccou	ınt: 12	Join <i>nts:</i> Fin	t Density Plan al quantity NH 10	Quant not equal	65,592 P	roject I/	DP (\$:	34,248.4 g PG	Region	n: 2	Si		20
Subaccou Mix Desig	ınt: 12 ın No	Join nts: Fin 2599 601100	Plantal quantity NH 16	Quant not equal 603-014 Process No	65,592 P	roject I/ 160, Wa	DP (\$: dsenbur; () F	34,248.4 g PG Mean	Regio	n: 2 ce Per 1	Si on \$29.7 St Dev.	77 Oth	
Subaccou Mix Desig	nnt: 12 n No Tests	Join nts: Fin 2599 601100 Tons	Plantial quantity NH 10 Quality Level	Quant not equal 603-014 Process No	65,592 P	Project I/ 160, Wa ding S	DP (\$: senbury () F	34,248.43 g PG Mean to TV	Region Prints	n: 2 ce Per 1 V	Si Ton \$29.7 St Dev. - V	77 Oth	er
Subaccou Mix Desig	int: 12 in No Tests	Join nts: Fin 2599 601100 Tons 81,538	Plantal quantity NH 16 Quality Level 96.243	Quant not equal 603-014 Process No Pay Factor 1.04619	65,592 P SH 10 & 1 Grad I/DP \$11,212.75	Project I/ 160, Wa ding S TV 6.000	DP (\$:	g PG Mean to TV 0.084	Region Pric St Dev. 0.122	n: 2 ce Per 1 V 0.200	St Dev V -0.078	Oth CTS Tons	er 0
Subaccou Mix Desig AC Density	n No Tests 82 164	Join nts: Fin 2599 601100 Tons 81,538 81,538	Plantal quantity NH 16 Quality Level 96.243 87.978	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205	65,592 P SH 10 & 1 Grad I/DP \$11,212.75 (\$27,133.36)	7roject I/ 160, Wa ding S TV 6.000 94.000	DP (\$:	g PG Mean to TV 0.084 0.882	Region Pric St Dev. 0.122 0.948	n: 2 ce Per 1 V 0.200 1.100	St Dev V -0.078 -0.152	Oth CTS Tons	er
Subaccou Mix Desig AC Density VMA	n No Tests 82 164 82	Join nts: Fin 2599 601100 Tons 81,538 81,538 81,538	Plantal quantity NH 16 Quality Level 96.243 87.978 96.699	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205 1.04978	65,592 P SH 10 & 1 Grace 1/DP \$11,212.75 (\$27,133.36) \$24,168.09	7roject I/ 160, Wa. ding S TV 6.000 94.000 14.300	Senbur S	8 PG Mean to TV 0.084 0.882 0.330	Region Pric St Dev. 0.122 0.948 0.475	n: 2 ce Per 7 V 0.200 1.100 0.600	St Dev. - V -0.078 -0.152 -0.125	Oth CTS Tons I/DP PF 1.0	er 0 \$0.00
Subaccou Mix Desig AC Density VMA	n No Tests 82 164 82	Join nts: Fin 2599 601100 Tons 81,538 81,538 81,538	Plantal quantity NH 16 Quality Level 96.243 87.978 96.699	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205 1.04978 1.02668	65,592 P SH 10 & 1 Grad I/DP \$11,212.75 (\$27,133.36) \$24,168.09 \$19,427.07	7roject I/ 160, Wa. ding S TV 6.000 94.000 14.300	Senbur S	8 PG Mean to TV 0.084 0.882 0.330	Region Pric St Dev. 0.122 0.948 0.475	n: 2 ce Per 7 V 0.200 1.100 0.600	St Dev. - V -0.078 -0.152 -0.125 0.030	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subaccou Mix Desig AC Density VMA	n No Tests 82 164 82	Join nts: Fin 2599 601100 Tons 81,538 81,538 81,538	Plantal quantity NH 16 Quality Level 96.243 87.978 96.699	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205 1.04978 1.02668	65,592 P SH 10 & 1 Grad I/DP \$11,212.75 (\$27,133.36) \$24,168.09 \$19,427.07	7roject I/ 160, Wa. ding S TV 6.000 94.000 14.300	Senbur S	8 PG Mean to TV 0.084 0.882 0.330	Region Pric St Dev. 0.122 0.948 0.475	n: 2 ce Per 7 V 0.200 1.100 0.600	St Dev. - V -0.078 -0.152 -0.125 0.030	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subaccou Mix Desig AC Density VMA Air Voids	n No Tests 82 164 82 82	Join nts: Fin 2599 601100 Tons 81,538 81,538 81,538 81,538	Plantal quantity NH 16 Quality Level 96.243 87.978 96.699 93.777	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205 1.04978 1.02668 I/DP:	65,592 F SH 10 & 1 Grace 1/DP \$11,212.75 (\$27,133.36) \$24,168.09 \$19,427.07 \$27,674.55	7roject I/ 160, Wa. ding S TV 6.000 94.000 14.300 4.000	Senbur S	g PG Mean to TV 0.084 0.882 0.330 0.153	Region Prid St Dev. 0.122 0.948 0.475 0.630	n: 2 ce Per 7 V 0.200 1.100 0.600	St Dev. - V -0.078 -0.152 -0.125 0.030	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subaccou Mix Desig AC Density VMA Air Voids	n No Tests 82 164 82 82	Join nts: Fin 2599 601100 Tons 81,538 81,538 81,538 81,538	Plantal quantity NH 10 Quality Level 96.243 87.978 96.699 93.777	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205 1.04978 1.02668 I/DP:	65,592 F SH 10 & 1 Grace 1/DP \$11,212.75 (\$27,133.36) \$24,168.09 \$19,427.07 \$27,674.55 Tons 81,538	7roject I/ 160, Wa. ding S TV 6.000 94.000 14.300 4.000	DP (\$:	g PG Mean to TV 0.084 0.882 0.330 0.153	Region Prid St Dev. 0.122 0.948 0.475 0.630	n: 2 ce Per 7 V 0.200 1.100 0.600	St Dev. - V -0.078 -0.152 -0.125 0.030	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subaccou Mix Desig AC Density VMA Air Voids	n No Tests 82 164 82 82	Join nts: Fin 2599 601100 Tons 81,538 81,538 81,538 81,538	Plantal quantity NH 10 Quality Level 96.243 87.978 96.699 93.777 AC Density	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205 1.04978 1.02668 I/DP: Tests 82 164	65,592 F SH 10 & 1 Grace 1/DP \$11,212.75 (\$27,133.36) \$24,168.09 \$19,427.07 \$27,674.55 Tons 81,538 81,538	7roject I/ 160, Wa. ding S TV 6.000 94.000 14.300 4.000 I/DP \$11,21 (\$27,13	() F Mean 5.916 93.118 14.630 4.153	g PG Mean to TV 0.084 0.882 0.330 0.153	Region Pri St Dev. 0.122 0.948 0.475 0.630	n: 2 ce Per 7 V 0.200 1.100 0.600	St Dev. - V -0.078 -0.152 -0.125 0.030	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subaccou Mix Desig AC Density VMA Air Voids	n No Tests 82 164 82 82	Join nts: Fin 2599 601100 Tons 81,538 81,538 81,538 81,538	Plantal quantity NH 16 Quality Level 96.243 87.978 96.699 93.777 AC Density VMA	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205 1.04978 1.02668 I/DP: Tests 82 164 82	65,592 F SH 10 & 1 Grace 1/DP \$11,212.75 (\$27,133.36) \$24,168.09 \$19,427.07 \$27,674.55 Tons 81,538 81,538 81,538 81,538	Froject I/ 160, Wa. ding S TV 6.000 94.000 14.300 4.000 I/DP \$11,21 (\$27,13 \$24,16	Isenbur, () F Mean 5.916 93.118 14.630 4.153	g PG Mean to TV 0.084 0.882 0.330 0.153	Region Pri St Dev. 0.122 0.948 0.475 0.630	n: 2 ce Per 7 V 0.200 1.100 0.600	St Dev. - V -0.078 -0.152 -0.125 0.030	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subaccou Mix Desig AC Density VMA Air Voids	n No Tests 82 164 82 82	Join nts: Fin 2599 601100 Tons 81,538 81,538 81,538 81,538	Plantal quantity NH 10 Quality Level 96.243 87.978 96.699 93.777 AC Density	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205 1.04978 1.02668 I/DP: Tests 82 164	65,592 F SH 10 & 1 Grace 1/DP \$11,212.75 (\$27,133.36) \$24,168.09 \$19,427.07 \$27,674.55 Tons 81,538 81,538	7roject I/ 160, Wa. ding S TV 6.000 94.000 14.300 4.000 I/DP \$11,21 (\$27,13	Isenbur, () F Mean 5.916 93.118 14.630 4.153	g PG Mean to TV 0.084 0.882 0.330 0.153	Region Pri St Dev. 0.122 0.948 0.475 0.630	n: 2 ce Per 7 V 0.200 1.100 0.600	St Dev. - V -0.078 -0.152 -0.125 0.030	Oth CTS Tons I/DP PF 1.0 Tons	er 0
Subaccou Mix Desig AC Density VMA Air Voids	n No Tests 82 164 82 82	Join nts: Fin 2599 601100 Tons 81,538 81,538 81,538 81,538	Plantal quantity NH 16 Quality Level 96.243 87.978 96.699 93.777 AC Density VMA Air Voids t Density	Quant not equal 603-014 Process No Pay Factor 1.04619 0.97205 1.04978 1.02668 I/DP: Tests 82 164 82	65,592 P SH 10 & 1 Grace 1/DP \$11,212.75 (\$27,133.36) \$24,168.09 \$19,427.07 \$27,674.55 Tons 81,538 81,538 81,538 81,538	Froject I/ 160, Wa. ding S TV 6.000 94.000 14.300 4.000 I/DP \$11,21 (\$27,13 \$24,16	DP (\$:	g PG Mean to TV 0.084 0.882 0.330 0.153	Region Pri St Dev. 0.122 0.948 0.475 0.630	n: 2 ce Per 7 V 0.200 1.100 0.600	St Dev. - V -0.078 -0.152 -0.125 0.030	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00

Subaccount: 12685		NH 0:	0505-033 US 50 West of Granada						Region: 2 Supplier: 32				
Mix Desig	gn No	161	Process No 1		o 1 <i>Gr</i>	Grading S () PG			Pi	rice Per	r Ton \$25.90		
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev. - V	Oth	er
AC	21	21,000	98.841	1.05000	\$2,719.50	4.800	4.744	4 0.056	0.113	0.200	-0.087	стѕ	0
Density	42	21,000	93.874	1.03367	\$7,324.33	94.000	93.462	0.538	0.942		-0.158	Tons I/DP	_
VMA	21	21,000	99.277	1.05000	\$2,719.50	14.000	13.69	5 0.305	0.390	0.600	-0.210	PF 1.0	\$0.00
Air Voids	21	21,000	92.540	1.03300	\$7,114.99					0.600		Tons	0
				I/DP:	\$19,878.32	 !					2\	/ Adj.	\$0.00
Mix Desig	n No	164	ı	Process No	o 1 <i>Gr</i>	ading S	()	PG	Pi	rice Per	Ton \$25.9	90	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	3	3,000	100.000	1.02500	\$194.25	4.800	4.787	7 0.013	0.055	0.200	-0.145	CTS	
Density	6	3,000	99.984	1.03500	\$1,087.80		_		0.779	1.100	-0.321	Tons	0
VMA	3	3,000	100.000	1.02500	\$194.25		13.567	7 0.433	0.231	0.600	-0.369	I/DP	\$0.00
Air Voids	3	3,000	100.000	1.02500	\$777.00				0.265	0.600	-0.335	PF 1.0 Tons	0
				I/DP:	\$2,253.30	-					2\	/ Adj.	\$0.00
Mix Desig	fix Design No 165		F	Process No 1			()	PG	Pi	ice Per 1	Ton \$25.9	90	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev.	Oth	er
. AC	37	36,746	99.640	1.05500	\$5,234.47	4.800	4.758	3 0.042	0.100	0.200	-0.100	CTS	•
Density	74	36,746	95.630	1.04167	\$15,865.00				0.898	1.100	-0.202	Tons	0
VMA	37	36,746	90.787	1.01396	\$1,328.13	14.000	13.341	0.659	0.409	0.600	-0.191	I/DP PF 1.0	\$0.00
Air Voids	37	36,746	84.562	0.96972	(\$11,526.50)	4.000	3.349	0.651	0.539	0.600	-0.061	Tons	0
				I/DP:	\$10,901.10	_					2\	/ Adj.	\$0.00
					٠								
Totals	: 1268	5	· · · · · · · · · · · · · · · · · · ·	Tests	Tons	I/DP							
			AC	61	60,746	\$8,14			I/DP				
			Density	122	60,746	\$24,27			\$0.00				
			VMA ir Voids	61 61	60,746	\$4,24			Adj				
			Density	61	60,746	(\$3,63	4.51)	;	\$0.00		•		
			•	Quant	69,821	Project I/	DP :	\$33,032.72		CPFC	1.02100		

Comments: Missing page 5 of report, Air Voids data.

Subaccount: 13009

NH 0343-020

Brush to Akron

Region: 4

Supplier: 14

Mix Design	gn No	3301	1	Process No	1 Gra	ding S	()	PG	Pric	ce Per 1	Fon \$47.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	ner
AC	3	2,535	75.902	1.02120	\$252.44	5.300	5.433	0.133	0.199	0.200	-0.001	CTS Tons	0
Density	6	2,534	84.342	1.01691	\$805.74	94.000	93.333	0.667	1.308	1.100	0.208	I/DP	\$0.00
VMA	3	2,534	100.000	1.02500	\$297.74	14.000	13.800	0.200	0.100	0.600	-0.500	PF 1.0	ψ0.00
Air Voids	3	2,534	76.995	1.02427	\$1,156.17	4.000	3.100	0.900	0.346	0.600	-0.254	Tons	0
				I/DP:	\$2,512.09						2\	/ Adj.	\$0.00
Mix Desig	gn No	780901	,	Process No	1 Grad	ding S	() F	PG	Pric	ce Per 1	Fon \$49.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	1	863		1.00000	\$0.00	5.200				0.200		CTS	•
Density	1	863		1.00000	\$0.00	94.000				1.100		Tons	0
VMA	1	863		1.00000	\$0.00	14.400				0.600		I/DP	\$0.00
Air Voids	1	863		1.00000	\$0.00	4.400				0.600		PF 1.0 Tons	0
				I/DP:	\$0.00						2V	Adj.	\$0.00
Mix Desig	gn No	781001	F	Process No	1 Grad	ding S	() F	PG	Pric	e Per 1	on \$46.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	τv	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	6	6,672	88.630	1.03202	\$982.82	5.300	5.115	0.185	0.097	0.200	-0.103	CTS	_
Density	5	2,308	100.000	1.03000	\$1,274.02		94.340	0.340	0.650	1.100	-0.450	Tons	0
VMA	6	6,672	60.702	0.88725	(\$3,460.57)	14.200		1.067	0.455	0.600	-0.145	I/DP	\$0.00
Air Voids	6	6,672	68.452	0.93840	(\$7,562.09)	4.200	3.200	1.000	0.390	0.600	-0.210	PF 1.0 Tons	4,364
		•		I/DP:	(\$8,765.82)							Adj.	\$0.00
 Mix Desig	ın No	7853201	F	Process No	1 Grad	ding S	() F	PG	Pric	e Per T	on \$49.0	10	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	6	5,950	69.390	0.94402	(\$1,632.07)	5.300	5.078	0.222	0.145	0.200	-0.055	CTS	•
Density	12	5,950	99.687	1.04500	\$5,247.90	94.000	93.017	0.983	0.434	1.100	-0.666	Tons	0
VMA	6	5,950	98.173	1.03500	\$1,020.42	14.000	13.683	0.317	0.515	0.600	-0.085	I/DP PF 1.0	\$0.00
Air Voids	6	5,950	97.315	1.03500	\$4,081.70	4.000	4.233	0.233	0.589	0.600	-0.011	Tons	0
				I/DP:	\$8,717.95						2V	Adj.	\$0.00
Mix Desig	n No	7853301	F	Process No	l Grad	ling S	() F	èG	Pric	e Per T	on \$46.0	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev. - V	Oth	er
AC	28	29,681	93.571	1.03641	\$4,971.14	5.300	5.256	0.044	0.160	0.200	-0.040	стѕ	
Density	57	28,139	87.183		(\$10,233.41)	94.000		0.932	0.940	1.100	-0.160	Tons	0
VMA	28	29,681	99.949	1.05500	\$7,509.29	14.000		0.071	0.374	0.600	-0.226	I/DP	\$0.00
-		•										PF 1.0	
Air Voids	28	29,681	98.300	1.05500	\$30,037.17	4.000	3.907	0.093	0.516	0.600	-0.084	Tons	1,542

Mix Desig	ın No	7856901		Process No) 1 G	rading S	()	PG	Pri	ce Per 1	Ton \$49.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	τv	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	ier
AC	15	14,874	99.848	1.05000	\$3,644.13	5.100	5.238	0.138	0.063	0.200	-0.137	CTS	0
Density	30	14,874	95.996	1.05064	\$14,761.88	94.000	93.377	0.623	0.800	1.100	-0.300	Tons I/DP	\$0.00
VMA	15	14,874	99.999	1.05000	\$3,644.13	14.100	14.213	0.113	0.342	0.600	-0.258	PF 1.0	Ф 0.00
Air Voids	15	14,874	99.560	1.05000	\$14,576.52	4.000	3.747	0.253	0.403	0.600	-0.197	Tons	0
				I/DP:	\$36,626.66	- 3					2\	/ Adj.	\$0.00
Mix Desig	n No	853201A	ı	Process No	o 1 <i>Gi</i>	ading S	()	⊃G	Pri	ce Per 1	Fon \$49.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	15	14,089	99.936	1.05000	\$3,451.81	5.200	5.185	0.015	0.105	0.200	-0.095	CTS	0
Density	29	14,089	90.147	1.01416	\$3,909.90	94.000	93.086	0.914	0.847	1.100	-0.253	Tons I/DP	\$0.00
VMA	15	14,089	100.000	1.05000	\$3,451.81	14.000	14.040	0.040	0.250	0.600	-0.350	PF 1.0	\$ 0.00
Air Voids	15	14,089	99.989	1.05000	\$13,807.22	4.000	4.067	0.067	0.385	0.600	-0.215	Tons	0
				I/DP:	\$24,620.74	_ 					2\	Adj.	\$0.00
Totals	: 1300	9		Tests	Tons	I/DP							
			AC	74	74,664	\$11,67	0.27	CTS	I/DP				
			Density	140	74,663	\$15,76	6.03	;	\$0.00				
			VMA	74	74,663	\$12,46	2.82	2V	Adj				
			ir Voids Density	74	74,663	\$56,09	6.69	:	\$0.00				
			Plan	Quant	69,629	Project I/	DP \$	95,995.8	1	CPFC	1.02708		

Subaccount: 13051		NH 05	NH 050A-005 W. McCulloch to Baltimore Regio						on: 2 Supplier: 32				
Mix Desig	Mix Design No 13051A		,	Process No 1		Grading S () PG			Pr	ice Per 1	Ton \$30.	20	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	24	24,000	79.131	0.94334	(\$4,106.78)	5.300	5.193	0.107	0.214	0.200	0.014	CTS	0
Density	48	24,000	98.102	1.05500	\$15,945.60	,	94.225		0.843	1.100	-0.257	Tons I/DP	-
VMA	24	24,000	97.038	1.05000	\$7,248.00	14.000	13.679	0.321	0.479	0.600	-0.121	PF 1.0	\$0.00
Air Voids	24	24,000	59.950	0.78842	(\$46,005.58)	4.000	2.937	1.063	0.538	0.600	-0.062	Tons	0
				I/DP:	(\$26,918.76	_					2\	/ Adj.	\$0.00
Mix Desig	gn No	13051B		Process No	o 1 Gra	ading S	0	PG	Pr	ice Per 1	Ton \$30.:	20	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Oth	er
AC	13	13,000	98.806	1.04500	\$1,766.70	5.100	5.089	0.011	0.134	0.200	-0.066	CTS	0
Density	25	12,500	98.711	1.05000	\$7,550.00	94.000	93.580	0.420	0.739	1.100	-0.361	Tons I/DP	
VMA	13	13,000	99.993	1.04500	\$3,533.40	14.000	13.892	0.108	0.380	0.600	-0.220	PF 1.0	\$0.00
Air Voids	13	13,000	91.533	1.03191	\$3,758.90	4.000	3.559	0.441	0.563	0.600	-0.037	Tons	0
		·		I/DP:	\$16,609.00						2\	/ Adj.	\$0.00
Mix Desig	ix Design No 13051C			Process No	1 Gr	ading S	()	PG	Pr	ice Per 1	Ton \$30.:	20	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. V	St Dev.	Oth	er
AC	5	4,236	90.975	1.03000	\$383.78	5.500	5.682	0.182	0.093	0.200	-0.107	CTS	0
Density	9	4,236	97.336	1.04000	\$2,046.84	94.000	93.389	0.611	0.790	1.100	-0.310	Tons I/DP	\$0.00
VMA	5	4,236	100.000	1.03000	\$767.56	14.300	13.780	0.520	0.303	0.600	-0.297	PF 1.0	φυ.υυ
Air Voids	5	4,236	86.924	1.03000	\$1,151.34	4.000	3.220	0.780	0.377	0.600	-0.223	Tons	0
				I/DP:	\$4,349.52	_					2\	/ Adj.	\$0.00
Totals	Totals: 1305			Tests	Tons	I/DP							
			AC Density	42 82	41,236 40,736	(\$1,95 \$25,54	,		\$ I/DP \$0.00				
			VMA	42	40,736	\$11,54			Adj				
			ir Voids Density	42	41,236	(\$41,09			\$0.00				
			Plan	Quant	49,323	Project I	/DP	(\$5,960.2	4)	CPFC	0.99521		

Tons Quality Level 98,922 90.839 98,422 89.265 98,922 97.489 98,922 90.597	Process No. Pay Factor 1.00197 0.98023 1.05561 1.00000 I/DP:	1/DP \$531.55 (\$21,245.82) \$30,037.14 (\$2.92) \$9,319.95	TV 5.000 94.000 14.000 4.000	Mean 5.045 93.175	Mean to TV 0.045 0.825 0.288 0.127	Pr St Dev 0.173 0.943 0.467 0.709		Con \$27.3 St Dev. - V -0.027 -0.157 -0.133 0.109	Other CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Tons Level 98,922 90.839 98,422 89.265 98,922 97.489 98,922 90.597	Factor 1.00197 0.98023 1.05561 1.00000 I/DP:	\$531.55 (\$21,245.82) \$30,037.14 (\$2.92) \$9,319.95	5.000 94.000 14.000 4.000	5.045 93.175 14.288	to TV 0.045 0.825 0.288	0.173 0.943 0.467	0.200 1.100 0.600	- V -0.027 -0.157 -0.133 0.109	CTS Tons I/DP PF 1.0	0
98,422 89.265 98,922 97.489 98,922 90.597 153 Quality	0.98023 1.05561 1.00000 I/DP:	(\$21,245.82) \$30,037.14 (\$2.92) \$9,319.95	94.000 14.000 4.000	93.175 14.288	0.825 0.288	0.943 0.467	1.100 0.600	-0.157 -0.133 0.109	Tons I/DP PF 1.0	_
Quality	Process No	· · ·						2V		0
Quality		o ? Grad							Adj.	\$0.00
		, <u> </u>	ding S	() F	G	Pr	ice Per T	on \$27.3	0	
	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
500	0.22727 I/DP:	(\$1,054.77) (\$4,219.09) (\$2,109.55) (\$3,164.32) (\$10,547.73)	94.000				0.200 1.100 0.600 0.600	2V	CTS Tons I/DP PF 1.0 Tons Adj. (\$	0 \$0.00 0 154.48)
AC Density VMA	Tests 98 198	Tons 98,922 98,922 98,922	(\$25,464	4.91)	\$	0.00				
Air Voids Joint Density Plar	98 Quant	98,922 — 107 295 P	, , ,	· 	•		CPFC	0.99955		
	Density VMA Air Voids Joint Density Plar	Tests AC 98 Density 198 VMA 98 Air Voids 98 Joint Density Plan Quant	Tests Tons AC 98 98,922 Density 198 98,922 VMA 98 98,922 Air Voids 98 98,922 Joint Density Plan Quant 107,295	Tests Tons I/DP AC 98 98,922 (\$525,464) VMA 98 98,922 \$27,925 Air Voids 98 98,922 (\$3,165) Joint Density Plan Quant 107,295 Project I/I	Tests Tons I/DP AC 98 98,922 (\$523.22) Density 198 98,922 (\$25,464.91) VMA 98 98,922 \$27,927.59 Air Voids 98 98,922 (\$3,167.24) Joint Density Plan Quant 107,295 Project I/DP (\$	Tests Tons I/DP AC 98 98,922 (\$523.22) CTS Density 198 98,922 (\$25,464.91) \$ VMA 98 98,922 \$27,927.59 2V Air Voids 98 98,922 (\$3,167.24) (\$15 Joint Density Plan Quant 107,295 Project I/DP (\$1,382.26)	Tests Tons I/DP AC 98 98,922 (\$523.22) CTS I/DP Density 198 98,922 (\$25,464.91) \$0.00 VMA 98 98,922 \$27,927.59 2V Adj Air Voids 98 98,922 (\$3,167.24) (\$154.48) Joint Density Plan Quant 107,295 Project I/DP (\$1,382.26)	Tests Tons I/DP AC 98 98,922 (\$523.22) CTS I/DP Density 198 98,922 (\$25,464.91) \$0.00 VMA 98 98,922 \$27,927.59 2V Adj Air Voids 98 98,922 (\$3,167.24) (\$154.48) Joint Density Plan Quant 107,295 Project I/DP (\$1,382.26) CPFC	Tests Tons I/DP AC 98 98,922 (\$523.22) CTS I/DP Density 198 98,922 (\$25,464.91) \$0.00 VMA 98 98,922 \$27,927.59 2V Adj Air Voids 98 98,922 (\$3,167.24) (\$154.48) Joint Density Plan Quant 107,295 Project I/DP (\$1,382.26) CPFC 0.99955	Tests Tons I/DP AC 98 98,922 (\$523.22) CTS I/DP Density 198 98,922 (\$25,464.91) \$0.00 VMA 98 98,922 \$27,927.59 2V Adj Air Voids 98 98,922 (\$3,167.24) (\$154.48) Joint Density Plan Quant 107,295 Project I/DP (\$1,382.26) CPFC 0.99955

Totals for all Projects Projects with Bid Dates from 1/1/2000 to 12/31/2000.

Number of Projects:	10	Tests	Tons	I/DP	
	AC	645	639,778	\$33,765.49	CTS I/DP
	Density	1234	629,851	\$138,580.71	\$0.00
	VMA	645	639,777	\$128,726.65	2V Adj
	Air Voids	645	639,777	\$100,410.14	(\$154.48)
	Joint Density				
	Pla	Plan Quant		Total I/DP \$401,32	8.51

Calculated Pay Factor Composite and I/DP by Region, VA

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2000.

PFC is back calculated from the Project's I/DP.

A Calculated Average Unit Price is used in the calculation.

Region		Duningt Co.d.	Des	Consider	Total	Average	Pay Factor	Decided UDD	Supplier
Subacct.	Bid Date	Project Code	Reg.	Grading	Tons	Price	Composite	Project I/DP	Supplier
12312	02/24/00	STA 1192-008	1	s	12,317	\$49.20	1.03974	\$24,082.08	45
Region	1	Number of Pro	jects:	1	CPFC:	Maximum:	1.03974		
		Total ⁻	Tons:	12,317		Minimum:	1.03974		
						Average:	1.03974		
		Incenti	ve/Disi	ncentive P	ayments		Sum I/DPs:	\$24,082.08	
		F	ositiv	e I/DPs:	1		Maximum:	\$24,082.08	
		N	egativ	e I/DPs:	0		Minimum:	\$24,082.08	
						A	Verage IDP:	\$24,082.08	
Region	n 2								
Subacct.		Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
12685	12/07/00	NH 0505-033	2	s	60,746	\$25.90	1.02100	\$33,032.72	32
12599	01/06/00	NH 1603-014	2	s	81,538	\$29.77	1.01140	\$27,674.55	20
13440	12/07/00	NH 0242-033	2	s	98,922	\$27.30	0.99949	(\$1,382.26)	49
13051	01/13/00	NH 050A-005	2	s	41,236	\$30.20	0.99521	(\$5,960.24)	32
Region	2	Number of Pro	jects:	4	CPFC:	Maximum:	1.02100		
		Total ³	Tons:	282,442		Minimum:	0.99521		
						Average:	1.00678		
		Incenti	ve/Disi	ncentive P	ayments		Sum I/DPs:	\$53,364.77	
		F	Positiv	e I/DPs:	2		Maximum:	\$33,032.72	
		N	egativ	e I/DPs:	2		Minimum:	(\$5,960.24)	
						A	verage IDP:	\$13,341.19	

Region	n 4				T-4-1	4	Day Fride		
Subacct.	Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
12401	11/09/00	STA C030-02	4	s	79,730	\$41.41	1.03414	\$112,709.24	14
11990	11/16/00	STA 0362-019	4	s	96,492	\$39.76	1.03117	\$119,561.18	14
13009	05/18/00	NH 0343-020	4	s	74,664	\$47.47	1.02708	\$95,995.81	14
12402	01/06/00	STR 0343-017	4	S	74,292	\$38.44	0.98801	(\$34,248.47)	14
Region	4	Number of Pro	jects:	4	CPFC:	Maximum:	1.03414		
		Total 1	Tons:	325,178		Minimum:	0.98801		
						Average:	1.02010		
		Incentiv	/e/Disi	ncentive P	ayments		Sum I/DPs:	\$294,017.76	
		F	Positive	: I/DPs:	3		Maximum:	\$119,561.18	
		N	egative	: I/DPs:	1		Minimum:	(\$34,248.47)	
						A	verage IDP:	\$73,504.44	
Region	n 6								
Subacct.		Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
12282	02/10/00	IM 0252-318	6	s	19,841	\$46.00	1.03272	\$29,863.90	10
Region	6	Number of Pro	jects:	1	CPFC:	Maximum:	1.03272		
		Total 1	Tons:	19,841		Minimum:	1.03272		
						Average:	1.03272		
		Incentiv	/e/Disi	ncentive P	ayments		Sum I/DPs:	\$29,863.90	
		F	ositive	I/DPs:	1		Maximum:	\$29,863.90	
		N	egative	I/DPs:	0		Minimum:	\$29,863.90	
···				···		A	verage IDP:	\$29,863.90	
Statewi	de Total	s: 1/1/2000	to 12/3	31/2000.					
		Number of Proj	ects:	10	CPFC	Maximum:	1.03974		
		Total To	ns: 63	39,778		Minimum:	0.98801		
						Average:	1.01800		
		Incentiv	e/Disir	centive Pa	ayments		Sum I/DPs:	\$401,328.51	
		P	ositive	I/DPs:	7		Maximum:	\$119,561.18	
		Ne	gative	I/DPs:	3		Minimum:	(\$34,248.47)	

Asphalt Content - Process Information, VA

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2000.

Processes with less than 3 tests not included.

Gr	'n	lii	no	, .	S
vı	$u\iota$	ııı	u_{z}	•	U

	J	ъ.		·	_				_						
Subacct.	Reg	Plan . Quant.	Mix Design	Price	Proces No.	Tons	Tests	Quality Level	Pay Factor	τv	Mean:	Mean to TV	St. Dev.	٧	StDev - V
12402	4	65,592	15100c	\$41.00	1	9,024	9	100.000	1.04000	5.10	5.05	0.05	0.085	0.20	-0.12
12685	2	69,821	164	\$25.90	1	3,000	3	100.000	1.02500	4.80	4.79	0.01	0.055	0.20	-0.15
13009	4	69,629	853201A	\$49.00	1	14,089	15	99.936	1.05000	5.20	5.18	0.01	0.105	0.20	-0.10
13009	4	69,629	7856901	\$49.00	1	14,874	15	99.848	1.05000	5.10	5.24	0.14	0.063	0.20	-0.14
12402	4	65,592	15100	\$41.00	1	6,975	7	99.685	1.03500	5.10	5.18	0.08	0.110	0.20	-0.09
12685	2	69,821	165	\$25.90	1	36,746	37	99.640	1.05500	4.80	4.76	0.04	0.100	0.20	-0.10
12685	2	69,821	161	\$25.90	1	21,000	21	98.841	1.05000	4.80	4.74	0.06	0.113	0.20	-0.09
13051	2	49,323	13051B	\$30.20	1	13,000	13	98.806	1.04500	5.10	5.09	0.01	0.134	0.20	-0.07
12599	2	69,398	601100	\$29.77	1	81,538	82	96.243	1.04619	6.00	5.92	0.08	0.122	0.20	-0.08
12402	4	65,592	15100a	\$41.00	1	13,193	13	95.745	1.04500	5.10	5.11	0.01	0.158	0.20	-0.04
12402	4	65,592	15100b	\$41.00	1	5,000	5	95.344	1.03000	5.10	5.02	80.0	0.154	0.20	-0.05
12402	4	65,592	123705b	\$36.25	1	4,963	5	94.460	1.03000	5.15	5.21	0.06	0.168	0.20	-0.03
11990	4	99,098	121418B	\$38.00	1	40,000	40	93.767	1.03334	5.20	5.20	0.00	0.163	0.20	-0.04
13009	4	69,629	7853301	\$46.00	1	29,681	28	93.571	1.03641	5.30	5.26	0.04	0.160	0.20	-0.04
12401	4	101,694	109889	\$28.00	1	16,890	17	93.540	1.03928	5.00	5.05	0.05	0.161	0.20	-0.04
12401	4	101,694	109888	\$38.00	1	6,000	6	91.324	1.03500	5.20	5.10	0.10	0.154	0.20	-0.05
12401	4	101,694	131604	\$45.75	1	56,840	57	91.184	1.01065	5.00	4.88	0.12	0.132	0.20	-0.07
13051	2	49,323	13051C	\$30.20	1	4,236	5	90.975	1.03000	5.50	5.68	0.18	0.093	0.20	-0.11
13440	2	107,295	153	\$27.30	1	98,922	98	90.839	1.00197	5.00	5.05	0.05	0.173	0.20	-0.03
13009	4	69,629	781001	\$46.00	1	6,672	6	88.630	1.03202	5.30	5.11	0.19	0.097	0.20	-0.10
11990	4	99,098	102396a	\$42.00	1	42,387	43	88.138	0.99290	5.00	4.89	0.11	0.160	0.20	-0.04
12312	1	12,307	97313A	\$53.00	1	2,951	6	86.390	1.02445	5.30	5.21	0.09	0.194	0.20	-0.01
12312	1	12,307	97313B	\$48.00	1	9,366	10	85.749	1.00906	5.40	5.59	0.19	0.108	0.20	-0.09
12282	6	19,661	1058511	\$46.00	1	19,841	20	80.347	0.95762	5.10	5.02	0.08	0.220	0.20	0.02
11990	4	99,098	121418B	\$38.00	2	14,105	15	80.204	0.96726	5.20	5.34	0.14	0.180	0.20	-0.02
12402	4	65,592	123705	\$36.25	1	22,656	23	80.021	0.95113	5.00	5.18	0.18	0.136	0.20	-0.06
12402	4	65,592	123705a	\$36.25	1	12,481	12	79.749	0.97263	5.15	5.31	0.16	0.162	0.20	-0.04
13051	2	49,323	13051A	\$30.20	1	24,000	24	79.131	0.94334	5.30	5.19	0.11	0.214	0.20	0.01
13009	4	69,629	3301	\$47.00	1	2,535	3	75.902	1.02120	5.30	5.43	0.13	0.199	0.20	0.00
13009	4	69,629	7853201	\$49.00	1	5,950	6	69.390	0.94402	5.30	5.08	0.22	0.145	0.20	-0.06

Gradii	ng: S												
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Process No.	Tons Tests	Quality Level	Pay Factor	TV	 /lean o TV	St. Dev	v	StDev - V
Totals	Grad	ding: S					Quality Level	Pay Factor		 /lean o TV	St. Dev	V	StDev - V
		То	ns: 6	38,915		Best:	100.000	1.05500		0.00	0.055	0.20	-0.15
		Proce	sses:	30		Worst:	69.390	0.94334		0.22	0.220	0.20	0.02
		ד	Tests:	644	Weigh	ted Average:	91.565	1.01618		80.0	0.146	0.20	-0.05
Asph	alt Co	entent - 1	Totals	1/1/20	00 to 12/3	31/2000.	Quality	Pari					C4D
							Quality Level	Pay Factor		 lean o TV	St. Dev.	v	StDev - V
		To	n s: 6:	38,915		Best:	100.000	1.05500		0.00	0.055	0.20	-0.15
		Proces	sses:	30		Worst:	69.390	0.94334		0.22	0.220	0.20	0.02
		Т	ests:	644	Weigh	ted Average:	91.565	1.01618		0.08	0.146	0.20	-0.05

VMA - Process Information

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2000.

Processes with less than 3 tests not included.

Grading: S

Subacct.	Reg.	Plan Quant.	Mix Design	Price	Process No.	Tons	Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	٧	StDev - V
12401	4	101,694	109889	\$28.00	1	16,890	17	100.000	1.05000	14.40	14.31	0.09	0.245	0.60	-0.355
13009	4	69,629	853201A	\$49.00	1	14,089	15	100.000	1.05000	14.00	14.04	0.04	0.250	0.60	-0.350
12312	1	12,307	97313B	\$48.00	1	9,366	10	100.000	1.04500	16.50	16.57	0.07	0.302	0.60	-0.298
12402	4	65,592	15100c	\$41.00	1	9,024	9	100.000	1.04000	14.30	14.21	0.09	0.310	0.60	-0.290
12401	4	101,694	109888	\$38.00	1	6,000	6	100.000	1.03500	14.00	14.05	0.05	0.176	0.60	-0.424
12312	1	12,307	97313A	\$53.00	1	2,951	6	100.000	1.03500	16.60	16.53	0.07	0.367	0.60	-0.233
12402	4	65,592	15100	\$41.00	1	6,975	7	100.000	1.03500	14.30	14.40	0.10	0.370	0.60	-0.230
13051	2	49,323	13051C	\$30.20	1	4,236	5	100.000	1.03000	14.30	13.78	0.52	0.303	0.60	-0.297
12402	4	65,592	15100b	\$41.00	1	5,000	5	100.000	1.03000	14.30	13.94	0.36	0.305	0.60	-0.295
13009	4	69,629	3301	\$47.00	1	2,534	3	100.000	1.02500	14.00	13.80	0.20	0.100	0.60	-0.500
12282	6	19,661	1058512	\$46.00	1	2,841	3	100.000	1.02500	16.50	16.47	0.03	0.153	0.60	-0.447
12685	2	69,821	164	\$25.90	1	3,000	3	100.000	1.02500	14.00	13.57	0.43	0.231	0.60	-0.369
13009	4	69,629	7856901	\$49.00	1	14,874	15	99.999	1.05000	14.10	14.21	0.11	0.342	0.60	-0.258
11990	4	99,098	102396a	\$42.00	1	42,387	43	99.995	1.05500	13.50	13.49	0.01	0.325	0.60	-0.275
13051	2	49,323	13051B	\$30.20	1	13,000	13	99.993	1.04500	14.00	13.89	0.11	0.380	0.60	-0.220
12402	4	65,592	123705	\$36.25	1	22,656	23	99.957	1.05000	15.00	14.90	0.10	0.371	0.60	-0.229
13009	4	69,629	7853301	\$46.00	1	29,681	28	99.949	1.05500	14.00	13.93	0.07	0.374	0.60	-0.226
11990	4	99,098	121418B	\$38.00	1	40,000	40	99.898	1.05500	14.30	14.11	0.19	0.345	0.60	-0.255
12401	4	101,694	131604	\$45.75	1	56,840	57	99.746	1.05500	14.00	13.73	0.27	0.341	0.60	-0.259
12402	4	65,592	123705a	\$36.25	1	12,481	12	99.282	1.04500	15.00	14.71	0.29	0.419	0.60	-0.181
12685	2	69,821	161	\$25.90	1	21,000	21	99.277	1.05000	14.00	13.69	0.31	0.390	0.60	-0.210
13009	4	69,629	7853201	\$49.00	1	5,950	6	98.173	1.03500	14.00	13.68	0.32	0.515	0.60	-0.085
13440	2	107,295	153	\$27.30	1	98,922	98	97.489	1.05561	14.00	14.29	0.29	0.467	0.60	-0.133
13051	2	49,323	13051A	\$30.20	1	24,000	24	97.038	1.05000	14.00	13.68	0.32	0.479	0.60	-0.121
12599	2	69,398	601100	\$29.77	1	81,538	82	96.699	1.04978	14.30	14.63	0.33	0.475	0.60	-0.125
12402	4	65,592	15100a	\$41.00	1	13,193	13	96.054	1.04500	14.30	14.15	0.15	0.605	0.60	0.005
11990	4	99,098	121418B	\$38.00	2	14,105	15	95.280	1.04750	14.30	13.75	0.55	0.400	0.60	-0.200
12685	2	69,821	165	\$25.90	1	36,746	37	90.787	1.01396	14.00	13.34	0.66	0.409	0.60	-0.191
12282	6	19,661	1058511	\$46.00	1	17,000	17	78.479	0.95129	15.40	15.99	0.59	0.755	0.60	0.155
12402	4	65,592	123705b	\$36.25	1	4,963	5	71.628	0.96966	15.00	14.24	0.76	0.709	0.60	0.109
13009	4	69,629	781001	\$46.00	1	6,672	6	60.702	0.88725	14.20	13.13	1.07	0.455	0.60	-0.145

Gradii	ng: S	•													
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Process No.	Tons	Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	v	StDev - V
Totals	Grad	ding: S	7					Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V
			Tons: (38,914			Best:	100.000	1.05561			0.01	0.100	0.60	-0.500
		Pro	cesses:	31		1	Worst:	60.702	0.88725			1.07	0.755	0.60	0.155
			Tests:	644	Weigh	nted Av	erage:	97.072	1.04344			0.27	0.406	0.60	-0.194
		VMA -	Totals	1/1/20	00 to 12/	31/200	00.								
								Quality	Pay Factor			Mean to TV	St. Dev.	v	StDev

Worst:

Weighted Average:

Best: 100.000 1.05561

60.702

0.88725

97.072 1.04344

638,914

31

644

Tons:

Tests:

Processes:

0.100 0.60 -0.500

0.755 0.60 0.155

0.406 0.60 -0.194

0.01

1.07

0.27

Air Voids - Process Information

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2000.

Processes with less than 3 tests not included.

Gra	din	α.	C
urru	utre	2.	J)

	3														
Sub.	Reg.	Plan Quant.	Mix Design	Price	Proce: No		Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	V	StDev -V
12685	2	69,821	164	\$25.90	1	3,000	3	100.000	1.02500	4.00	3.20	0.80	0.265	0.60	-0.335
13009	4	69,629	853201A	\$49.00	1	14,089	15	99.989	1.05000	4.00	4.07	0.07	0.385	0.60	-0.215
12402	4	65,592	15100c	\$41.00	1	9,024	9	99.602	1.04000	4.20	3.71	0.49	0.327	0.60	-0.273
13009	4	69,629	7856901	\$49.00	1	14,874	15	99.560	1.05000	4.00	3.75	0.25	0.403	0.60	-0.197
12312	1	12,307	97313B	\$48.00	1	9,366	10	99.240	1.04500	4.00	3.60	0.40	0.380	0.60	-0.220
13009	4	69,629	7853301	\$46.00	1	29,681	28	98.300	1.05500	4.00	3.91	0.09	0.516	0.60	-0.084
12401	4	101,694	131604	\$45.75	1	56,840	57	98.114	1.05500	4.00	3.80	0.20	0.483	0.60	-0.117
12402	4	65,592	123705a	\$36.25	1	12,481	12	97.879	1.04500	4.00	3.90	0.10	0.566	0.60	-0.034
13009	4	69,629	7853201	\$49.00	1	5,950	6	97.315	1.03500	4.00	4.23	0.23	0.589	0.60	-0.011
12312	1	12,307	97313A	\$53.00	1	2,951	6	96.853	1.03500	4.00	4.35	0.35	0.530	0.60	-0.070
12282	6	19,661	1058511	\$46.00	1	19,841	20	96.268	1.05000	4.10	3.79	0.31	0.513	0.60	-0.087
11990	4	99,098	102396a	\$42.00	1	42,387	43	96.099	1.04864	3.50	3.36	0.14	0.576	0.60	-0.024
11990	4	99,098	121418B	\$38.00	1	40,000	40	94.678	1.03949	4.00	3.69	0.31	0.552	0.60	-0.048
12402	4	65,592	123705	\$36.25	1	22,656	23	94.092	1.04100	4.00	4.37	0.37	0.541	0.60	-0.059
12599	2	69,398	601100	\$29.77	1	81,538	82	93.777	1.02668	4.00	4.15	0.15	0.630	0.60	0.030
13051	2	49,323	13051B	\$30.20	1	13,000	13	91.533	1.03191	4.00	3.56	0.44	0.563	0.60	-0.037
13440	2	107,295	153	\$27.30	1	98,922	98	90.597	1.00000	4.00	4.13	0.13	0.709	0.60	0.109
12401	4	101,694	109889	\$28.00	1	16,890	17	87.100	1.00476	4.10	3.29	0.81	0.344	0.60	-0.256
13051	2	49,323	13051C	\$30.20	1	4,236	5	86.924	1.03000	4.00	3.22	0.78	0.377	0.60	-0.223
12685	2	69,821	165	\$25.90	1	36,746	37	84.562	0.96972	4.00	3.35	0.65	0.539	0.60	-0.061
12402	4	65,592	15100	\$41.00	1	6,975	7	83.806	1.01073	4.20	3.67	0.53	0.671	0.60	0.071
12402	4	65,592	123705b	\$36.25	1	4,963	5	82.128	1.01595	4.00	3.53	0.47	0.769	0.60	0.169
13009	4	69,629	3301	\$47.00	1	2,534	3	76.995	1.02427	4.00	3.10	0.90	0.346	0.60	-0.254
13009	4	69,629	781001	\$46.00	1	6,672	6	68.452	0.93840	4.20	3.20	1.00	0.390	0.60	-0.210
12402	4	65,592	15100a	\$41.00	1	13,193	13	62.472	0.84803	4.20	3.30	0.90	0.883	0.60	0.283
11990	4	99,098	121418B	\$38.00	2	14,105	15	60.243	0.81847	4.00	2.97	1.03	0.654	0.60	0.054
13051	2	49,323	13051A	\$30.20	1	24,000	24	59.950	0.78842	4.00	2.94	1.06	0.538	0.60	-0.062
12402	4	65,592	15100b	\$41.00	1	5,000	5	59.634	0.89851	4.20	3.05	1.15	0.184	0.60	-0.416
12401	4	101,694	109888	\$38.00	1	6,000	6	44.770	0.75557	4.10	2.82	1.28	0.585	0.60	-0.015

Totals Grading: S		Quality Level	Pay Factor	Mean to TV	St. Dev.	v	StDev - V
Tons : 617,9	14 Best:	100.000	1.05500	0.07	0.184	0.60	-0.416
Processes: 2	Worst:	44.770	0.75557	1.28	0.883	0.60	0.28
Tests: 62	Weighted Average:	89.931	1.00546	0.35	0.564	0.60	-0.036
Air Voids - Totals 1/1/2000 to	12/31/2000.						
Air Voids - Totals 1/1/2000 to	12/31/2000.	Quality Level	Pay Factor	Mean to TV	St Dev	v	StDev
•		Level	Factor	to TV	St. Dev.	V	- V
Tons : 617,9	14 Best:	Level 100.000	Factor 1.05500	to TV 0.07	0.184	0.60	- V -0.41
Tons: 617,9	14 Best: 29 Worst:	Level	Factor	to TV		-	

Mat Density - Process Information, Voids Acceptance

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2000.

Processes with less than 3 tests not included. Compaction Test Sections not included.

Gradin	ng:	S													
Subacct.	Reg	Plan . Quant.	Mix Design	Price	Proce No		Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	v	StDev - V
13009	4	69,629	781001	\$46.00	1	2,308	5	100.000	1.03000	94.000	94.340	0.340	0.650	1.100	-0.450
12685	2	69,821	164	\$25.90	1	3,000	6	99.984	1.03500	94.000	94.433	0.433	0.779	1.100	-0.321
12401	4	101,694	109888	\$38.00	1	6,000	12	99.759	1.04500	94.000	91.192	2.808	0.757	1.100	-0.343
13009	4	69,629	7853201	\$49.00	1	5,950	12	99.687	1.04500	94.000	93.017	0.983	0.434	1.100	-0.666
11990	4	99,098	102396a	\$42.00	1	42,387	85	99.335	1.06000	94.000	93.221	0.779	0.501	1.100	-0.599
11990	4	99,098	21418B	\$38.00	2	14,605	30	98.884	1.05500	94.000	93.517	0.483	0.689	1.100	-0.411
13051	2	49,323	13051B	\$30.20	1	12,500	25	98.711	1.05000	94.000	93.580	0.420	0.739	1.100	-0.361
13051	2	49,323	13051A	\$30.20	1	24,000	48	98.102	1.05500	94.000	94.225	0.225	0.843	1.100	-0.257
11990	4	99,098	121418B	\$38.00	1	26,500	53	97.379	1.05500	94.000	93.511	0.489	0.787	1.100	-0.313
13051	2	49,323	13051C	\$30.20	1	4,236	9	97.336	1.04000	94.000	93.389	0.611	0.790	1.100	-0.310
12282	6	19,661	1058511	\$46.00	2	14,841	30	97.307	1.05500	94.000	93.703	0.297	0.884	1.100	-0.216
12401	4	101,694	131604	\$45.75	1	56,840	114	96.136	1.04421	94.000	93.614	0.386	0.896	1.100	-0.204
13009	4	69,629	7856901	\$49.00	1	14,874	30	95.996	1.05064	94.000	93.377	0.623	0.800	1.100	-0.300
12685	2	69,821	165	\$25.90	1	36,746	74	95.630	1.04167	94.000	93.550	0.450	0.898	1.100	-0.202
12312	1	12,307	97313B	\$48.00	1	9,366	19	94.946	1.04636	94.000	93.526	0.474	0.944	1.100	-0.156
12401	4	101,694	109889	\$28.00	1	8,242	17	94.163	1.04237	94.000	93.265	0.735	0.825	1.100	-0.275
12685	2	69,821	161	\$25.90	1	21,000	42	93.874	1.03367	94.000	93.462	0.538	0.942	1.100	-0.158
12282	6	19,661	1058511	\$46.00	1	5,000	10	93.748	1.04284	94.000	93.350	0.650	0.916	1.100	-0.184
12312	1	12,307	97313A	\$53.00	1	2,951	12	91.722	1.03363	94.000	93.592	0.408	1.130	1.100	0.030
12402	4	65,592	123705a	\$36.25	1	12,481	24	90.608	1.01992	94.000	93.592	0.408	1.144	1.100	0.044
13009	4	69,629	353201A	\$49.00	1	14,089	29	90.147	1.01416	94.000	93.086	0.914	0.847	1.100	-0.253
13440	2	107,295	153	\$27.30	1	98,422	197	89.265	0.98023	94.000	93.175	0.825	0.943	1.100	-0.157
12599	2	69,398	601100	\$29.77	1	81,538	164	87.978	0.97205	94.000	93.118	0.882	0.948	1.100	-0.152
13009	4	69,629	7853301	\$46.00	1	28,139	57	87.183	0.98024	94.000	93.068	0.932	0.940	1.100	-0.160
12402	4	65,592	15100a	\$41.00	1	13,193	26	85.469	0.98511	94.000	93.454	0.546	1.273	1.100	0.173
13009	4	69,629	3301	\$47.00	1	2,534	6	84.342	1.01691	94.000	93.333	0.667	1.308	1.100	0.208
12402	4	65,592	15100c	\$41.00	1	9,024	17	83.661	0.98443	94.000	93.112	0.888	1.123	1.100	0.023
12402	4	65,592	15100b	\$41.00	1	5,000	10	82.406	0.99253	94.000	93.770	0.230	1.495	1.100	0.395
12402	4	65,592	123705b	\$36.25	1	4,185	8	81.072	0.99212	94.000	93.062	0.938	1.187	1.100	0.087
12402	4	65,592	123705	\$36.25	1	22,656	47	78.598	0.91833	94.000	92.862	1.138	1.079	1.100	-0.021
12402	4	65,592	15100	\$41.00	1	6,975	14	77.935	0.95580	94.000	92.764	1.236	0.982	1.100	-0.118

Grading: S Plan Mix Subacct. Reg. Quant. Design Pric	Process ce No. Tons Test	Quality s Level	Pay Factor	TV Mean	Mean to TV	St. Dev.	v	StDev
Totals - Grading: S		Quality	Pay		Mean		-	StDev
		Level	Factor		to TV	St. Dev.	V	- V
Tons: 609,582	Best:	100.000	1.06000		0.225	0.434	1.100	-0.666
Processes: 31	Worst:	77.935	0.91833		2.808	1.495	1.100	0.395
Tests: 1,232								
	Weighted Average:	92.145	1.01344		0.694	0.894	1.100	-0.206
Mat Density - Totals 1/1/200	00 to 12/31/2000.		···				•	
		Quality Level	Pay Factor		Mean to TV	St. Dev.	٧	StDev - V
Tons: 609,582	Best:	100.000	1.06000		0.225	0.434	1.100	-0.666
Processes: 31	Worst:	77.935	0.91833		2.808	1.495	1.100	0.395
Tests: 1,232			5.01000		2.000	1.755	1.100	0.030
·	Weighted Average:	92.145	1.01344		0.694	0.894	1.100	-0.206

Appendix C

Reports for 2001 Projects

Report 5	Project Listing by Region/Subaccount	C - 1
Report 6	Project Data	C - 2
Report 7	Calculated Pay Factor Composite and I/DP by Region	C - 5
Report 8	Asphalt Content – Process Information	C - 6
Report 9	VMA – Process Information	C - 7
Report 10	Air Voids – Process Information	
Report 11	Mat Density Process Information	

Project Listing by Region/Subaccount - Voids Acceptance

Projects with Bid Dates from 1/1/2001 to 12/31/2001.

Regio	on: 2						
	Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quan
	13437	STA 165A-00	SH 165 N of Rye	17	01/18/01	\$1,583,235.40	28,723
	13445	NH 1603-018	SH 160A w/o La Veta	14	05/10/01	\$3,059,738.54	73,678
		N I CD			100	401	
	1	Number of Pro	jects 2 —	Total Qu	antity 102,	401	
Regio	on: 6	Number of Pro	jects 2	Total Qu	antity 102,	401	
Regio			jects 2 Location	Total Qu	Bid Date	Total Bid	Plan Quant
Regio	on: 6		<u> </u>				<i>Plan Quant</i> 52,869

Number of Projects 3

Total Plan Quantity 155,270

Subaccount: 12019		2019	NH 4	NH 4701-088 C-470 SH 8 to Ken Caryl Region						n: 6	Su	ipplier:	13
Mix Desi	gn No	150884		Process No	o 1 Gra	ding S	() F	PG	Pri	ce Per 1	Ton \$37.5	i0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	54	53,879	97.940	1.05500	\$11,112.54	5.000	4.985	0.015	0.131	0.200	-0.069	CTS	0
Density	108	53,879	98.934	1.06000	\$48,491.10	94.000	93.840	0.160	0.777	1.100	-0.323	Tons I/DP	\$0.00
VMA	54	53,879	97.266	1.05500	\$11,112.54	14.100	13.893	0.207	0.514	0.600	-0.086	PF 1.0	Ф 0.00
Air Voids	54	53,879	93.666	1.02977	\$24,057.73	4.100	3.631	0.469	0.482	0.600	-0.118	Tons	0
				I/DP:	\$94,773.91						2V	Adj.	\$0.00
	1001			Tests	Tons	I/DP							
1 otals	s: 1201	9	AC	54	53,879	\$11,11	2.54	стя	I/DP				
			Density	108	53,879	\$48,49			\$0.00				
			VMA	54	53,879	\$11,11	2.54	2V	Adj				
			Air Voids t Density	54	53,879	\$24,05	7.73	;	\$0.00				
			Dlan	Quant	52,869 F	roject l	DP 6	94,773.9°	1	CPFC	1.04691		
			riai	Quant	52,009	roject ii	DI \$	5 4 ,773.5	•	CF, C	1.04031		
Ć	Comme	nts:	rian	Quant	52,609	roject ii	DI 45	94,773.9	•	OFIC	1.04031		
Subacco				65A-009	SH 165 N	-	5 1 \$:	94,773.9	Region			ipplier:	17
	unt: 13	3437	STA 1		SH 165 N	of Rye		PG	Regio	n: 2			17
Subacco	unt: 13	3437	STA 1	65A-009	SH 165 N	of Rye			Regio	n: 2	Su		
Subacco	unt: 13 gn No	3 <i>437</i> 180	STA I	65A-009 Process No	SH 165 N	of Rye	() F	PG Mean	Region Pri	n: 2 ce Per 1	Su Fon \$32.7 St Dev.	Oth	er
Subacco Mix Desig	unt: 13 gn No Tests	3437 180 Tons	STA I	65A-009 Process No Pay Factor	SH 165 N o 1 Grad	of Rye ding S TV 6.100	() F	PG Mean to TV	Region Prio	n: 2 ce Per 1 V	Su Fon \$32.7 St Dev. - V	Oth CTS Tons	er 0
Subacco Mix Desig	unt: 13 gn No Tests 29	3437 180 Tons 28,496	STA 1 Quality Level 93.435	65A-009 Process No. Pay Factor 1.03516	SH 165 N o 1 Grad I/DP \$3,276.41	of Rye ding S TV 6.100 94.000	() F Mean 6.082	PG Mean to TV 0.018	Region Prio St Dev. 0.166	n: 2 ce Per 1 V 0.200	Su Fon \$32.7 St Dev. - V -0.034	Oth CTS Tons	
Subacco Mix Desig AC Density	unt: 13 gn No Tests 29 57	3437 180 Tons 28,496 28,496	STA 1 Quality Level 93.435 99.284	65A-009 Process No. Pay Factor 1.03516 1.05500	SH 165 N D 1 Grad I/DP \$3,276.41 \$20,500.02	of Rye ding S TV 6.100 94.000	() F Mean 6.082 93.516	PG Mean to TV 0.018 0.484	### Region Prid St Dev. 0.166 0.633	n: 2 ce Per 1 V 0.200 1.100	Su Ton \$32.7 St Dev V -0.034 -0.467	Oth CTS Tons	er 0
Subacco Mix Desig AC Density VMA	unt: 13 gn No Tests 29 57 29	3437 180 Tons 28,496 28,496 28,496	STA 1 Quality Level 93.435 99.284 100.000	65A-009 Process No. Pay Factor 1.03516 1.05500 1.05500	SH 165 N D 1 Grad I/DP \$3,276.41 \$20,500.02 \$10,250.01	of Rye ding S TV 6.100 94.000 15.700	() F Mean 6.082 93.516 15.497	PG Mean to TV 0.018 0.484 0.203	Region Prio St Dev. 0.166 0.633 0.224	n: 2 v 0.200 1.100 0.600	Su Fon \$32.7 St Dev. - V -0.034 -0.467 -0.376 -0.224	Oth CTS Tons I/DP PF 1.0	er 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	unt: 13 gn No Tests 29 57 29 29	3437 180 Tons 28,496 28,496 28,496 28,496	STA 1 Quality Level 93.435 99.284 100.000	65A-009 Process No. Pay Factor 1.03516 1.05500 1.05500 1.05500 I/DP:	SH 165 N I/DP \$3,276.41 \$20,500.02 \$10,250.01 \$15,375.02 \$49,401.46	of Rye ding S TV 6.100 94.000 15.700 4.000	() F Mean 6.082 93.516 15.497	PG Mean to TV 0.018 0.484 0.203	Region Prio St Dev. 0.166 0.633 0.224	n: 2 v 0.200 1.100 0.600	Su Fon \$32.7 St Dev. - V -0.034 -0.467 -0.376 -0.224	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	unt: 13 gn No Tests 29 57 29	3437 180 Tons 28,496 28,496 28,496 28,496	STA 1 Quality Level 93.435 99.284 100.000	65A-009 Process No Pay Factor 1.03516 1.05500 1.05500 1.05500 I/DP:	SH 165 N I/DP \$3,276.41 \$20,500.02 \$10,250.01 \$15,375.02 \$49,401.46	of Rye ding S TV 6.100 94.000 15.700 4.000	() F Mean 6.082 93.516 15.497 4.072	Mean to TV 0.018 0.484 0.203 0.072	Prio St Dev. 0.166 0.633 0.224 0.376	n: 2 v 0.200 1.100 0.600	Su Fon \$32.7 St Dev. - V -0.034 -0.467 -0.376 -0.224	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	unt: 13 gn No Tests 29 57 29 29	3437 180 Tons 28,496 28,496 28,496 28,496	STA 1 Quality Level 93.435 99.284 100.000 99.941	65A-009 Process No. Pay Factor 1.03516 1.05500 1.05500 1.05500 I/DP:	SH 165 N 1 Grad 1/DP \$3,276.41 \$20,500.02 \$10,250.01 \$15,375.02 \$49,401.46 Tons 28,496	of Rye ding S TV 6.100 94.000 15.700 4.000	() F Mean 6.082 93.516 15.497 4.072	Mean to TV 0.018 0.484 0.203 0.072	Region Prio St Dev. 0.166 0.633 0.224	n: 2 v 0.200 1.100 0.600	Su Fon \$32.7 St Dev. - V -0.034 -0.467 -0.376 -0.224	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	unt: 13 gn No Tests 29 57 29 29	3437 180 Tons 28,496 28,496 28,496 28,496	STA 1 Quality Level 93.435 99.284 100.000 99.941	65A-009 Process No. Pay Factor 1.03516 1.05500 1.05500 1.05500 I/DP: Tests 29	SH 165 N I/DP \$3,276.41 \$20,500.02 \$10,250.01 \$15,375.02 \$49,401.46	of Rye ding S TV 6.100 94.000 15.700 4.000	() F Mean 6.082 93.516 15.497 4.072	Mean to TV 0.018 0.484 0.203 0.072	Region Pric St Dev. 0.166 0.633 0.224 0.376	n: 2 v 0.200 1.100 0.600	Su Fon \$32.7 St Dev. - V -0.034 -0.467 -0.376 -0.224	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	unt: 13 gn No Tests 29 57 29 29	3437 180 Tons 28,496 28,496 28,496	STA 1 Quality Level 93.435 99.284 100.000 99.941 AC Density	65A-009 Process No. Pay Factor 1.03516 1.05500 1.05500 1.05500 I/DP: Tests 29 57	SH 165 N 1/DP \$3,276.41 \$20,500.02 \$10,250.01 \$15,375.02 \$49,401.46 Tons 28,496 28,496	Tof Rye ding S TV 6.100 94.000 15.700 4.000	() F Mean 6.082 93.516 15.497 4.072	PG Mean to TV 0.018 0.484 0.203 0.072 CTS	Region Pric St Dev. 0.166 0.633 0.224 0.376	n: 2 v 0.200 1.100 0.600	Su Fon \$32.7 St Dev. - V -0.034 -0.467 -0.376 -0.224	Oth CTS Tons I/DP PF 1.0 Tons	er 0 \$0.00

Comments:

Subaccount: 13445		NH 10	NH 1603-018 SH 160A w/o La Veta						on: 2	Si	upplier:	14	
Mix Desig	gn No	181A		Process N	o 1 <i>Gra</i>	Grading S ()		PG	PG PI		Ton \$30.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	35	35,000	91.622	1.02068	\$2,170.94	5.800	5.701	0.099	0.145	0.200	-0.055	стѕ	0
Density	67	33,500	93.518	1.02594	\$10,428.55	94.000	93.972	0.028	1.093	1.100	-0.007	Tons I/DP	_
VMA	35	35,000	99.984	1.05500	\$5,775.00	14.600	14.514	0.086	0.337	0.600	-0.263	PF 1.0	\$0.00
Air Voids	35	35,000	93.415	1.03260	\$13,690.70	4.000			0.484	0.600	-0.116	Tons	0
		·		I/DP:	\$32,065.19	-					2\	/ Adj.	\$0.00
 Mix Desig	gn No	181C		Process No	o 1 Gra	ding S	()	PG	Pr	ice Per	Fon \$30.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	14	14,000	97.784	1.04500	\$1,890.00	5.800	5.814	0.014	0.142	0.200	-0.058	CTS	•
Density	30	15,000	88.615	1.00341	\$613.35		93.350		1.097	1.100	-0.003	Tons	0
VMA	14	14,000	100.000	1.04500	\$1,890.00	14.300	14.486	0.186	0.293	0.600	-0.307	I/DP PF 1.0	\$0.00
Air Voids	14	14,000	90.580	1.02649	\$4,450.57	4.000	3.457	0.543	0.506	0.600	-0.094	Tons	0
				I/DP:	\$8,843.92	-					2\	/ Adj.	\$0.00
Mix Desig	gn No	181D	,	Process No	o 1 Gra	ding S	()	PG	Pr	ice Per ī	Fon \$30.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	. v	St Dev.	Oth	er
AC	27	27,000	90.062	1.01477	\$1,196.23	5.600	5.639	0.039	0.181	0.200	-0.019	CTS	
Density	53	26,500	91.805	1.01639	\$5,211.36	94.000	92.774		0.558	1.100	-0.542	Tons I/DP	0
VMA	27	27,000	96.734	1.05500	\$4,455.00	14.300	14.626	0.326	0.485	0.600	-0.115	PF 1.0	\$0.00
Air Voids	27	27,000	88.473	1.00443	\$1,436.51	4.000	3.919	0.081	0.769	0.600	0.169	Tons	0
				I/DP:	\$12,299.10	•					2\	Adj.	\$0.00
Totals	: 1344	15		Tests	Tons	I/DP							
			AC	76	76,000	\$5,25			I/DP				
			Density	150	75,000	\$16,25			\$0.00				
		,	VMA ir Voids	76 76	76,000	\$12,12			Adj				
			ar voias t Density	76	76,000	\$19,57	7.78	;	\$0.00				
			Plan	Quant	73,678 F	Project I/	DP 9	53,208.2°	1	CPFC	1.02334		
					•	-	•	, -					

Comments: Final quantities not equal.

Totals for all Projects Projects with Bid Dates from 1/1/2001 to 12/31/2001.

Number of Projects: 3	Tests	Tons	I/DP	•	
AC	159	158,375	\$19,64	6.12	CTS I/DP
Density	315	157,375	\$85,24	4.38	\$0.00
VMA	159	158,375	\$33,48	2.55	2V Adj
Air Voids	159	158,375	\$59,01	0.53	\$0.00
Joint Density					
Pla	n Quant	155,270	Total I/DP	\$197,383.	58

Calculated Pay Factor Composite and I/DP by Region, VA

Criteria: Projects with Bid Dates from 1/1/2001 to 12/31/2001.

PFC is back calculated from the Project's I/DP.

A Calculated Average Unit Price is used in the calculation.

Region	n 2								
Subacct.	Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
13437	01/18/01	STA 165A-00	2	s	28,496	\$32.70	1.05302	\$49,401.46	17
13445	05/10/01	NH 1603-018	2	s	76,000	\$30.00	1.02334	\$53,208.20	14
Region	2	Number of Pro	jects:	2	CPFC:	Maximum:	1.05302	····	
		Total 7	Tons:	104,496		Minimum:	1.02334		
						Average:	1.03818		
		Incentiv	ve/Disi	ncentive P	ayments		Sum I/DPs:	\$102,609.66	4.4
		F	Positiv	e I/DPs:	2		Maximum:	\$53,208.20	
		N	egativ	e I/DPs:	0		Minimum:	\$49,401.46	
							verage IDP:	\$51,304.83	
Regioi	n 6								
Subacct.		Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
12019	01/18/01	NH 4701-088	6	s	53,879	\$37.50	1.04691	\$94,773.91	13
Region	6	Number of Pro	jects:	1	CPFC:	Maximum:	1.04691		
		Total 1	Tons:	53,879		Minimum:	1.04691		
						Average:	1.04691		
		Incentiv	/e/Disi	ncentive P	ayments		Sum I/DPs:	\$94,773.91	1
		F	ositiv	e I/DPs:	1		Maximum:	\$94,773.91	
		N	egativ	e I/DPs:	0		Minimum:	\$94,773.91	
						A	verage IDP:	\$94,773.91	
Statewi	de Total	s: 1/1/2001	to 12/	31/2001.					
		Number of Proj	ects:	3	CPFC	Maximum:	1.05302		
		Total To	ons: 1	58,375		Minimum:	1.02334		
						Average:	1.04109		
		Incentiv	e/Disi	ncentive P	ayments		Sum I/DPs:	\$197,383.57	
		P	ositive	I/DPs:	3		Maximum:	\$94,773.91	
		Ne	gative	: I/DPs:	0		Minimum:	\$49,401.46	
						A	verage IDP:	\$65,794.52	

Asphalt Content - Process Information, VA

Criteria: Projects with Bid Dates from 1/1/2001 to 12/31/2001.

Processes with less than 3 tests not included.

Grading: S

Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.	-	Tests	Quality Level	Pay Factor	TV	Mean:	Mean to TV	St. Dev.	v	StDev - V
12019	6	52,869	150884	\$37.50	1	53,879	54	97.940	1.05500	5.00	4.99	0.01	0.131	0.20	-0.07
13445	2	73,678	181C	\$30.00	1	14,000	14	97.784	1.04500	5.80	5.81	0.01	0.142	0.20	-0.06
13437	2	28,723	180	\$32.70	1	28,496	29	93.435	1.03516	6.10	6.08	0.02	0.166	0.20	-0.03
13445	2	73,678	181A	\$30.00	1	35,000	35	91.622	1.02068	5.80	5.70	0.10	0.145	0.20	-0.06
13445	2	73,678	181D	\$30.00	1	27,000	27	90.062	1.01477	5.60	5.64	0.04	0.181	0.20	-0.02
Totals	Grad	dina: S	•					0 - 111							

Totals Grading: 5			Quality Level	Pay Factor	Mean to TV	St. Dev. \	StDev / - V
Tons:	158,375	Best:	97.940	1.05500	0.01	0.131 0.2	20 -0.07
Processes:	5	Worst:	90.062	1.01477	0.10	0.181 0.2	20 -0.02
Tests:	159	Weighted Average:	94.376	1.03610	0.04	0.150 0.2	20 -0.05

Asphalt Content - Totals 1/1/2001 to 12/31/2001.

			Quality Level	Pay Factor	Mean to TV	St. Dev.	٧	StDev - V
Tons:	158,375	Best:	97.940	1.05500	0.01	0.131	0.20	-0.07
Processes:	5	Worst:	90.062	1.01477	0.10	0.181	0.20	-0.02
Tests:	159	Weighted Average:	94.376	1.03610	0.04	0.150	0.20	-0.05

VMA - Process Information

Processes:

Tests:

5

159

Criteria: Projects with Bid Dates from 1/1/2001 to 12/31/2001.

Processes with less than 3 tests not included.

~	7.	•
(-r	ading:	
U , (uuuig.	_

Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	٧	StDe - V
13437	2	28,723	180	\$32.70	1	28,496	29	100.000	1.05500	15.70	15.50	0.20	0.224	0.60	-0.376
13445	2	73,678	181C	\$30.00	1	14,000	14	100.000	1.04500	14.30	14.49	0.19	0.293	0.60	-0.30
13445	2	73,678	181A	\$30.00	1	35,000	35	99.984	1.05500	14.60	14.51	0.09	0.337	0.60	-0.26
12019	6	52,869	150884	\$37.50	1	53,879	54	97.266	1.05500	14.10	13.89	0.21	0.514	0.60	-0.08
13445	2	73,678	181D	\$30.00	1	27,000	27	96.734	1.05500	14.30	14.63	0.33	0.485	0.60	-0.11
10iuis	Grad	ding: S		58 375			Rest:	Quality Level	Pay Factor				St. Dev.	V	- V
			Tons: 1	58,375			Best:	100.000	1.05500			0.09	0.224	0.60	-0.376
		Pro	cesses:	5		٧	Vorst:	96.734	1.04500			0.33	0.514	0.60	-0.086
			Tests:	159	Weig	ghted Ave	erage:	98.510	1.05412			0.20	0.398	0.60	-0.202
		VMA -	Totals	1/1/200	1 to 12	2/31/200	1.								
		VMA -	Totals	1/1/200	1 to 12	2/31/200	1.	Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V

Worst:

Weighted Average:

96.734 1.04500

98.510 1.05412

0.33

0.20

0.514 0.60 -0.086

0.398 0.60 -0.202

Air Voids - Process Information

Criteria: Projects with Bid Dates from 1/1/2001 to 12/31/2001.

Processes with less than 3 tests not included.

Gra	ding:	S													
Sub.	Reg.	Plan Quant.	Mix Design	Price	Proce No		Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	٧	StDev -V
13437	2	28,723	180	\$32.70	1	28,496	29	99.941	1.05500	4.00	4.07	0.07	0.376	0.60	-0.224
12019	6	52,869	150884	\$37.50	1	53,879	54	93.666	1.02977	4.10	3.63	0.47	0.482	0.60	-0.118
13445	2	73,678	181A	\$30.00	1	35,000	35	93.415	1.03260	4.00	3.52	0.48	0.484	0.60	-0.116
13445	2	73,678	181C	\$30.00	1	14,000	14	90.580	1.02649	4.00	3.46	0.54	0.506	0.60	-0.094
13445	2	73,678	181D	\$30.00	1	27,000	27	88.473	1.00443	4.00	3.92	0.08	0.769	0.60	0.169
Total	s Gra	ding: S	on s: 158	3,375			Best:	Quality Level	Pay Factor			Mean to TV	St. Dev. 0.376	V	StDev - V
			esses:	5			Worst:	88.473	1.00443			0.54	0.769	0.60	-0.224 0.169
		•	Tests:	159	Wei	ghted Av	/erage:	93.581	1.03033			0.34	0.514	0.60	-0.086
Air V	oids -	Totals	1/1/2001	to 12/3	1/2001	l.									
		·						Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V
		To	ons: 158	3,375			Best:	99.941	1.05500			0.07	0.376	0.60	-0.224
		Proce	esses:	5			Worst:	88.473	1.00443			0.54	0.769	0.60	0.169
		•	Tests:	159	Wei	ghted Av	verage:	93.581	1.03033			0.34	0.514	0.60	-0.086

Mat Density - Process Information, Voids Acceptance

Criteria: Projects with Bid Dates from 1/1/2001 to 12/31/2001.

Processes with less than 3 tests not included.

Compaction Test Sections not included.

Gradi	ng: l	S													
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proc No		Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	V	StDev - V
13437	2	28,723	180	\$32.70	1	28,496	57	99.284	1.05500	94.000	93.516	0.484	0.633	1.100	-0.46
12019	6	52,869	150884	\$37.50	1	53,879	108	98.934	1.06000	94.000	93.840	0.160	0.777	1.100	-0.32
13445	2	73,678	181A	\$30.00	1	33,500	67	93.518	1.02594	94.000	93.972	0.028	1.093	1.100	-0.00
13445	2	73,678	181D	\$30.00	1	26,500	53	91.805	1.01639	94.000	92.774	1.226	0.558	1.100	-0.542
13445	2	73,678	181C	\$30.00	1	15,000	30	88.615	1.00341	94.000	93.350	0.650	1.097	1.100	-0.003
Totals	- Gi	rading:	· S					Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V
	•	Tons	: 157,	375		E	Best:	99.284	1.06000			0.028	0.558	1.100	-0.542
		Process	es:	5		Wo	orst:	88.615	1.00341			1.226	1.097	1.100	-0.003
		Te	sts: 3	15 V	Veigh	ted Aver	age:	95.661	1.03911			0.417	0.812	1.100	-0.288
Mat D	ensi	ity - To	tals 1	/1/2001	to 12	2/31/200	1.	4.180							
								Quality Level	Pay Factor			Mean to TV	St. Dev.	V	StDev - V
		Tons	3: 157,	375		E	Best:	99.284	1.06000			0.028	0.558	1.100	-0.542
		Process	ses:	5		W	orst:	88.615	1.00341			1.226	1.097	1.100	-0.003
		Te	sts: 3	15 V	Vainh	ted Aver	aue.	95.661	1.03911			0.447	0.012	1 100	-0.288
				Y	• eigii	rea with	aye.	90.001	1.03911			0.417	0.812	1.100	-0.7

Appendix D

Reports for 2002 Projects

Report 5	Project Listing by Region/Subaccount	D - 1
Report 6	Project Data	D - 3
Report 7	Calculated Pay Factor Composite and I/DP by Region	D - 26
Report 8	Asphalt Content – Process Information	D - 29
Report 9	VMA – Process Information	D - 31
Report 10	Air Voids – Process Information	D - 34
Report 11	Mat Density Process Information	D - 36

		N.		

Project Listing by Region/Subaccount - Voids Acceptance

Projects with Bid Dates from 1/1/2002 to 12/31/2002.

Region: 1						
Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quant
13817	NH 0405-029	SH 40 Kansas - W	19	03/28/02	\$3,143,089.80	58,231
14127	STA 030A-02	SH 30, Quincy North	41	12/19/02	\$1,077,005.96	18,105
	Number of Pro	jects 2	Total Qu	antity 76,3	36	
Region: 2				***************************************		
Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quant
12834	STA 012A-03	Weston - East	17	06/13/02	\$3,714,553.86	23,845
13439	NH 0504-039	SH 50 Jct I-25 to Troy	32	02/14/02	\$2,299,963.60	24,169
13480	STA 1151-013	SH 115 Roca Roja	55	01/24/02	\$1,856,026.01	17,036
13578	BR 385A-013	Bridge Over Wolf Creek	11	10/10/02	\$1,981,378.60	6,415
13931	IM 0251-159	Walsenburg - North	11	02/07/02	\$2,749,967.79	63,299
13936	STA 1604-007	Beshour Junction - West	53	02/07/02	\$826,389.35	15,841
	Number of Pro	jects 6	Total Qu	antity 150,	605	
Region: 3						-
Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quant.
13534	IM 0701-156	Debeque East & West	16	08/29/02	\$2,972,311.96	69,728
13863	STA R300-08	Montrose - Var Locations	12	02/21/02	\$2,001,740.80	36,348
	Number of Pro	jects 2	Total Qu	antity 106,	076	
Region: 4				· · · · · · · · · · · · · · · · · · ·	.	
Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quant.
12404	STA 1131-004	Junction 138 - North	19	04/25/02	\$3,958,666.79	75,105
13906	STA 071A-01	SH 71 N of SH 14 S of Neb.	19	04/25/02	\$3,960,222.95	79,140
-	Number of Pro	iects 2	Total Qu	antity 154,	245	

gion: 5		* * * * * * * * * * * * * * * * * * * *				
Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quant.
13522	NH 2852-012	US 285 Jct SH 17 PH 2	11	09/19/02	\$6,129,972.67	110,324
	Number of Pro	jects 1	Total Qu	antity 110,	324	
gion: 6			, , , , , , , , , , , , , , , , , , , ,			
Subacct.	Project Code	Location	Supplier	Bid Date	Total Bid	Plan Quant.
12287	NH 0853-038	Santa Fe, Church to C470	45	08/01/02	\$7,850,406.60	59,892
12864	IM 0761-179	I-76, York St to US 6	33	02/21/02	\$2,234,663.10	28,694
13067	IM 0703-268	I 70 Wads to Pecos	19	06/27/02	\$3,796,020.05	29,601
13278	STA 2873-112	US 287, Colfax to I-70	33	12/12/02	\$2,648,202.40	12,367
			40	00/44/00	60.077.006.00	10 145
13354	STA 2854-087	Hampden: Dahlia to Yosemite	e 10	02/14/02	\$2,077,336.02	19,145
13354 13355	STA 2854-087 STA 177A-00	SH 177, Arapahoe to Bellevie		12/12/02	\$873,294.23	8,522

Totals: Projects with Bid Dates from 1/1/2002 to 12/31/2002.

Number of Projects 20

Total Plan Quantity 811,523

Subacco	unt: 12	2287	NH 0	853-038	Santa Fe,	Church	to C47	70	Region	n: 6	Si	upplier:	45
Mix Desig	gn No	1470001		Process No	1 Grad	ding S	(100)	PG 64-22	Pri	ce Per 1	Fon \$33.6	35	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev.	Oth	ner
AC	24	24,649	79.617	0.94682	(\$4,410.60)	5.400	5.339	0.061	0.230	0.200	0.030	CTS	0
Density	49	24,649	99.763	1.05500	\$18,247.66	94.000	93.978	0.022	0.687	1.100	-0.413	Tons 1/DP	\$0.00
VMA	24	24,649	99.541	1.05000	\$4,147.19	14.600	14.429	0.171	0.421	0.600	-0.179	PF 1.0	φυ.υυ
Air Voids	24	24,649	92.664	1.03237	\$10,739.07	3.000	3.192	0.192	0.658	0.600	0.058	Tons	0
				I/DP:	\$28,723.32						2\	/ Adj.	\$0.00
Mix Desig	n No	147038	ı	Process No	1 Grad	ding S	(100)	PG 76-28	Pri	ce Per 1	Fon \$41.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	ier
AC	3	3,000	100.000	1.02500	\$307.50	5.400	5.430		0.178	0.200	-0.022	CTS	
Density	6	3,000	81.669	1.02500	\$304.42		93.000		1.081	1.100	-0.022	Tons	0
VMA	3	3,000	100.000	1.02500	\$307.50	14.000			0.551	0.600	-0.049	I/DP	\$0.00
Air Voids	3	3,000	100.000	1.02500	\$1,230.00	3.300	3.233		0.462	0.600	-0.138	PF 1.0 Tons	0
7 70.00	Ū	0,000	100.000	-	· · · · · · · · · · · · · · · · · · ·		0.200	0.007	0.402	0.000		Adi.	\$0.00
				I/DP:	\$2,149.42							Auj.	Ψ0.00
Mix Desig	ın No	147038	ı	Process No	2 Gra d	ding S	(100)	PG 76-28	Pric	e Per 1	Ton \$41.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
AC	18	17,213	93.369	1.03820	\$2,695.66	5.400	5.312	0.088	0.143	0.200	-0.057	CTS	0
Density	35	17,213	99.047	1.05500	\$15,526.13	94.000	93.986	0.014	0.805	1.100	-0.295	Tons I/DP	\$0.00
VMA	18	17,213	94.496	1.04400	\$3,105.06	14.000	13.528	0.472	0.466	0.600	-0.134	PF 1.0	ψ0.00
Air Voids	18	17,213	90.674	1.02377	\$6,710.35	3.300	2.872	0.428	0.589	0.600	-0.011	Tons	0
				I/DP:	\$28,037.20						2V	' Adj.	\$0.00
Mix Desig	ın No	147064	,	Process No	1 Grad	ding SX	(100)	PG 64-22	Pric	e Per 1	on \$42.7	' 5	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	7	7,000	79.880	0.99276	(\$216.73)	5.800	5.690	0.110	0.214	0.200	0.014	CTS	
Density	13	6,500	87.024	1.01020	\$1,133.65		92.423	1.577	0.377	1.100	-0.723	Tons	0
VMA	7	7,000	100.000	1.03500	\$1,047.37	14.800	15.129	0.329	0.340	0.600	-0.260	I/DP	\$0.00
Air Voids	7	7,000	88.339	1.02885	\$3,453.51	3.400		0.029	0.818	0.600	0.218	PF 1.0 Tons	0
				I/DP:	\$5,417.80							Adj.	\$0.00
Mix Desig	n No	147067	F	Process No	1 Grad	ling SX	(100) I	PG 64-22	Pric	e Per T	on \$42.7	5	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	2	1,618		1.00000	\$0.00	5.900		to 1 v	J. 201.	0.200	- ₩	CTS	
~~	_	1,618	100.000	1.03000	\$830.03		92.550	1.450	0.058	1.100	-1.042	Tons	0
Density	4												
Density VMA	4 2		100.000				02.000	1.400	0.000		-1.042	I/DP	\$0.00
Density VMA Air Voids	4 2 2	1,618 1,618	100.000	0.79167 0.77083	(\$1,441.03) (\$6,340.54)	14.800	02.000	1.400	0.000	0.600	-1.042	I/DP PF 1.0 Tons	\$0.00 0

Totals: 12287		Tests	Tons	I/DP			
	AC	54	53,480	(\$1,624.17)	CTS I/DP		
	Density	107	52,980	\$36,041.89	\$0.00	*	
	VMA	54	53,480	\$7,166.09	2V Adj		
	Air Voids	54	53,480	\$15,792.39	\$0.00		
	Joint Density		•				
	Plar	Quant	59.892	Project I/DP	\$57,376,20	CPFC	1.02831

Comments:

Subacco	unt: 12	2404	STA 1	131-004	Junction .	138 - No	orth		Region	n: 4	St	upplier:	19
Mix Desig	gn No	10615		Process No	1 Grad	ding S	() F	·G	Pric	e Per 1	Ton \$35.2	29	•
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev. - V	Oth	er
AC	5	4,012	78.829	1.00302	\$42.69	5.700	5.542	0.158	0.169	0.200	-0.031	CTS	c
Density	10	4,012	82.639	0.99372	(\$355.41)	94.000	93.760	0.240	1.486	1.100	0.386	Tons I/DP	\$0.00
VMA	5	4,012	100.000	1.03000	\$424.75	14.500	14.180	0.320	0.432	0.600	-0.168	PF 1.0	φυ.υι
Air Voids	5	4,012	81.634	1.01411	\$799.01	3.000	2.600	0.400	0.857	0.600	0.257	Tons	0
				I/DP:	\$911.04						2V	⁄ Adj.	\$0.00
Mix Desig	gn No	131343		Process No	1 Grad	ding S	() F	•G	Pric	e Per 1	Ton \$35.2	29	
	Tests	Tons	Quality	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	36		Level								_	CTS	
Density	72	36,197 36,197	91.386 85.516	1.01857 0.96127	\$2,372.65 (\$19,790.15)	5.300 94.000		0.104 0.957	0.144 0.982	0.200 1.100	-0.056 -0.118	Tons	0
VMA	36	36,197	100.000	1.05500	\$7,025.66	14.900		0.069	0.352	0.600	-0.116	I/DP	\$0.00
Air Voids	36	36,197	99.719	1.05500	\$28,102.63	4.100	4.247	0.147	0.397	0.600	-0.203	PF 1.0 Tons	0
All Voluo	50	50,157	33.713	1/DP:	\$17,710.79		7.271	0.147	0.557	0.000		Adj.	\$0.00
				1/DF.	φ17,710.79								
Mix Desig	gn No	131344	,	Process No	1 Grad	() F	PG	Price Per Ton \$39		Ton \$39.5	50		
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev. - V	Oth	er
AC	17	16,689	99.045	1.05000	\$3,296.08	5.300	5.396	0.096	0.093	0.200	-0.107	CTS Tons	0
Density	33	16,689	87.075	0.99082	(\$2,421.80)	94.000	92.852	1.148	0.755	1.100	-0.345	I/DP	\$0.00
VMA	17	16,689	100.000	1.05000	\$3,296.08	14.800	14.835	0.035	0.335	0.600	-0.265	PF 1.0	\$ 0.00
Air Voids	17	16,689	97.570	1.05000	\$13,184.31	4.300	4.000	0.300	0.478	0.600	-0.122	Tons	0
				I/DP:	\$17,354.67						2V	Adj.	\$0.00
Mix Desig	n No	152279	ı	Process No	1 Grad	ding S	() F	'G	Pric	e Per 1	on \$39.5	60	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev. - V	Oth	er
AC	18	18,171	93.554	1.03916	\$2,810.55	5.300	5.366	0.066	0.154	0.200	-0.046	CTS	^
Density	36	17,541	86.604	0.98529	(\$4,078.01)	94.000	93.144	0.856	1.027	1.100	-0.073	Tons I/DP	0
VMA	18	18,171	100.000	1.05000	\$3,588.77	14.000	14.211	0.211	0.245	0.600	-0.355	PF 1.0	\$0.00
Air Voids	18	18,171	99.751	1.05000	\$14,355.09	3.400	3.456	0.056	0.444	0.600	-0.156	Tons	0
				I/DP:	\$16,676.40						2V	Adj.	\$0.00
Mix Desig	ın No	TS	ı	Process No	1 Grad	ling S	() F	G	Pric	e Per T	on \$39.5	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC					\$0.00			••	-	0.200	•	CTS	_
Density	7	630	50.000	0.78655	(\$2,124.66)	94.000	92.000	2.000	0.983	1.100	-0.117	Tons	0
												I/DP	\$0.00
VMA					\$0.00					0.600			
VMA Air Voids					\$0.00 \$0.00					0.600 0.600		PF 1.0 Tons	0

Totals	s: 1240	04	AC	Tests 76	Tons 75,069	I/DP \$8,52	1 07	CTS	S I/DP				
			Density	158	75,069 75,069	(\$28,77			\$0.00				
			VMA	76	75,069	\$14,33	,		Adj				
			Air Voids	76	75,069	\$56,44			\$0.00				
		Join	t Density			, ,							
			Plan	Quant	75,105	Project I/	DP \$	50,528.2	4	CPFC	1.01807		
	Comme	nts:											
Subacco	unt: 12	2834	STA 0	12A-034	Weston -	East			Regio	n: 2	Su	ipplier:	17
Mix Desig	gn No	227	ı	Process No	o 1 Gra	ading S	0	PG	Pr	ice Per 1	Ton \$40.5	50	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	. V	St Dev.	Oth	er
AC	5	5,000	51.738	0.84102	(\$3,219.28)	5.800	5.510	0.290	0.205	0.200	0.005	CTS	0
Density	11	5,500	95.748	1.04500	\$4,009.50		93.473	0.527	0.901	1,100	-0.199	Tons I/DP	
VMA	5	5.000	94.214	1.03000	\$607.50	14.400	14.620	0.220	0.698	0.600	0.098		\$0.00
Air Voids	5	5,000	53.518	0.85472	(\$11,767.85)		4.140		0.607	0.600	0.007	PF 1.0 Tons	0
	·	0,000	00.010	I/DP:	(\$10,370.13)	-			0.00	0.000		Adj.	\$0.00
Mix Desig	n No	227B		Process No	o 1 Gra	ading S	()	 PG	Pr	ice Per 1	Fon \$40.5	i0	
			Quality	Pay		_		Mean	04 Days		St Dev.	Oth	ier
	Tests	Tons	Level	Factor	I/DP	TV	Mean		St Dev.		- V	CTS	
AC	18	18,000	94.375	1.04338	\$3,162.30	5.800	5.763	0.037	0.159	0.200	-0.041	Tons	0
Density	35	17,500	96.697	1.05378	\$15,247.43		93.666	0.334	0.901	1.100	-0.199	I/DP	\$0.00
VMA	18	18,000	98.682	1.05000	\$3,645.00		14.339	0.061	0.519	0.600	-0.081	PF 1.0	
Air Voids	18	18,000	98.571	1.05000	\$14,580.00	3.500	3.583	0.083	0.520	0.600	-0.080	Tons	0
				I/DP:	\$36,634.73						2V	Adj.	\$0.00
Totals	: 1283	4		Tests	Tons	I/DP							
			AC Danaita	23	23,000		6.98)		6 I/DP				
			Density VMA	46 23	23,000	\$19,25			\$0.00				
			VIMA Air Voids	23 23	23,000 23,000	\$4,25 \$2,81			*Adj \$0.00				
			t Density	20	۵,000	Ψ£,U I	۵. ای		ψ0.00				
			-	Quant	23,845	Project I/	DP ¢	26,264.6	^	CPFC	1.02820		
			. iaii	ZUMIL	20,070	0,000 1/	· · ·	20,207.0	•	J. 1 J			

Comments:

Subacco	unt: 12	2864	IM 07	61-179	I-76, Yor			ıpplier:	33				
Mix Desig	gn No	105886	1	Process No	1 Gra	ding S	() F	PG	Pri	ce Per 1	Ton \$42.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev. - V	Oth	ner
AC	1	1,000		1.00000	\$0.00	4.800				0.200		CTS	C
Density	2	1,000		0.96591	(\$572.73)	94.000	91.900	2.100		1.100		Tons I/DP	\$0.00
VMA	1	1,000		1.00000	\$0.00	14.100				0.600		PF 1.0	Ψ0.00
Air Voids	1	1,000		0.75000	(\$4,200.00)	3.900				0.600		Tons	C
				I/DP:	(\$4,772.73)	•					2V	Adj.	\$0.00
Mix Desig	gn No	105886		Process No	2 Gra	ding S	() F	PG	Pri	ce Per 1	Ton \$42.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev.	Oth	ег
AC	2	2,105		1.00000	\$0.00	4.800				0.200		CTS	,
Density	4	2,105	62.122	0.93602	(\$2,262.71)	94.000	93.000	1.000	2.146	1.100	1.046	Tons	0
VMA	2	2,105		1.00000	\$0.00	14.100				0.600		I/DP	\$0.00
Air Voids	2	2,105		1.00000	\$0.00	3.900				0.600		PF 1.0 Tons	o
		,		I/DP:	(\$2,262.71)	•					2V	Adj.	\$0.00
Mix Desig	n No	105886A	Process No 1 Grading S () PG Price Per Ton S					on \$42.0	10				
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	2	1,917	Lovei	1.00000	\$0.00	4.800	woun	10 14	Ot Bott.	0.200	•	CTS	
Density	3	1,917	46.462	0.86211	(\$4,440.83)		91.833	2.167	1.301	1.100	0.201	Tons	0
VMA	2	1,917		1.00000	\$0.00	14.100	01.000	2.107	1.001	0.600	0.201	I/DP	\$0.00
Air Voids	2	1,917		1.00000	\$0.00	3.900				0.600		PF 1.0 Tons	0
	-	1,017		I/DP:	(\$4,440.83)					0.000	2V	' Adj.	\$0.00
Mix Desig	ın No	146992		Process No	1 Grad	ding S	() F	 PG	Pric	ce Per 1	on \$42.0	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev.	Other	
AC	13	12,615	84.457	0.99672	(\$173.73)	4.800	4.772	0.028	0.214	0.200	0.014	CTS	
Density	25	12,615	89.730	1.01385	\$2,936.23		93.480	0.520	1.128	1.100	0.014	Tons	0
VMA	13	12,615	85.742	1.00357	\$189.15		13.777	0.623	0.540	0.600	-0.060	I/DP	\$0.00
Air Voids	13	12,615	85.684	1.00337	\$692.13	4.400		0.554	0.606	0.600	0.006	PF 1.0 Tons	0
All Volus	13	12,013	05.004	I/DP:			3.040	0.554	0.000	0.000		'Adj.	\$0.00
				IIDP.	\$3,643.78						2.	Auj.	4 0.00
Tadala	. 1207		<u></u>	Tests	Tons	I/DP							
1 otals	: 1286	4	AC		17,637		3.73)	CTS	I/DP				
			Density		17,637	(\$4,34			\$0.00				
			VMA	18	17,637		9.15		Adj				
			ir Voids Density	18	17,637	(\$3,50	7.87)	:	\$0.00				
			Plan	Quant	28,694 F	roject I/	DP (9	\$7,832.49	9)	CPFC	0.98943		
,	ommei				.,		(1	,	,				

Subacco	Design No 147004 Tests Tons Le AC 18 18,902 87. 87. ensity 32 18,902 94. 94. VMA 18 18,902 99. 88. Voids 18 18,902 88. 88. Design No 990-2 Qua Tests Tons Le AC 15 15,228 98.	IM 07	IM 0703-268 I 70 Wa			ds to Pecos Regi				Si	Supplier: 19		
Mix Desig	n No	147004		Process N	o 1 G	rading S	()	PG	Pri	ice Per	Fon \$39.7	75	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	18	18,902	87.089	1.00338	\$253.95	5.200	5.219	0.019	0.201	0.200	0.001	стѕ	^
Density	32	18.902	94.621	1.04149	\$12,470.62	94.000	93.437	0.563	0.899	1.100	-0.201	Tons I/DP	0
VMA	18	18,902	99.395	1.05000	\$3,756.77	7 14.300	13.844	0.456	0.451	0.600	-0.149	PF 1.0	\$0.00
Air Voids	18	18,902	88.891	1.01380	\$4,147.98	3.000	3.311	0.311	0.701	0.600	0.101	Tons	0
				I/DP:	\$20,629.32	2					2V	/ Adj.	\$0.00
Mix Design No 990-2			-	Process No	rading S	()	PG	Pri	ice Per	Ton \$39.7	,		
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC			98.999	1.05000	\$3,026.57		4.885	0.015	0.128	0.200	-0.072	CTS	_
Density				1.05500	\$13,316.89			0.690	0.585	1.100	-0.515	Tons	0
VMA	15	15.228		1.04103	\$2,483.64		14.507	0.393	0.536	0.600	-0.064	I/DP	\$0.00
Air Voids	15	15,228		1.05000	\$12,106.26		3.880	0.120	0.583	0.600	-0.017	PF 1.0 Tons	0
		,		I/DP:	\$30,933.36			• • • • • • • • • • • • • • • • • • • •				/ Adj.	\$0.00
Totals	: 1306	7		Tests	Tons	I/DP							
			AC	33	34,130	\$3,28			I/DP				
			Density	61	34,130	\$25,78			\$0.00				
			VMA Air Voids nt Density	33 33	34,130 34,130	\$6,24 \$16,25			Adj \$0.00				
			Plan	Quant	29,601	Project I/	DP \$	51,562.68	3	CPFC	1.03801		

Comments: Gradation & Voids, see 13066

Subacco	X Design No	STA 2	STA 2873-112 US 287,			Colfax to I-70 Regi				Si	upplier:	ipplier: 33	
Mix Desig	gn No	147010	,	Process No	o 1 Gr	ading S	() 1	PG	Pr	ice Per	Ton \$38.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	ner
AC	3	2,500	69.059	0.99734	(\$25.26	5.100	4.843	0.257	0.067	0.200	-0.133	CTS	0
Density	3	•	39.336	0.80149	(\$4,526.10	,		2.267	0.702	1.100	-0.398	Tons	0
VMA	3	2.500	100.000	1.02500	\$237.50	•		0.500	0.200	0.600	-0.400	I/DP	\$0.00
Air Voids	3	,	75.612	1.02035	\$773.19	3.000	3.900	0.900	0.361	0.600	-0.239	PF 1.0 Tons	1,000
				I/DP:	(\$3,540.67	<u>'</u>)					2 V	/ Adj.	\$0.00
Mix Desig	ın No	147010B	3 <i>F</i>	Process No) 1 Gr	ading S	ding S () PG		Pri	ice Per 1	e Per Ton \$38.0		
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	ner
AC	11	10,049	98.035	1.04500	\$1,718.38		5.140	0.040	0.137	0.200	-0.063	CTS	_
Density	20	10,049	99.994	1.05000	\$7,637.24			0.060	0.600	1.100	-0.500	Tons	0
VMA	11	10,049	91.930	1.03521	\$1,344.39	14.600	14.309	0.291	0.655	0.600	0.055	I/DP	\$0.00
Air Voids	11	10,049	87.779	1.01696	\$2,590.11		3.100	0.100	0.799	0.600	0.199	PF 1.0 Tons	0
		·		I/DP:	\$13,290.12							⁄ Adj.	\$0.00
	: 1327			Tests	Tons	I/DP							
		•	AC	14	12,549	\$1,69	3.12	CTS	I/DP				
			Density	23	12,549	\$3,11	1.14	:	\$0.00				
			VMA	14	12,549	\$1,58	1.89	2V	Adj				
			ir Voids Density	14	12,549	\$3,36	3.30	,	\$0.00				
			Plan	Quant	12,367	Project I/	DP :	\$9,749.4	5	CPFC	1.02045		

Comments:

Subacco	unt: 13	3354	STA 2	STA 2854-087		Hampden: Dahlia to Yosemite Regi					Si	upplier: 10	
Mix Desig	n No	105894	ı	Process No	o 1 Gra	ding S	()	PG	Pr	ice Per	Ton \$41.1	10	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev. - V	Oth	er
AC	1	2,000			\$0.00	5.200				0.200		стѕ	
Density	2	1,000		0.98864	(\$186.82)					1.100		Tons	0
VMA	1	1,000			\$0.00	15.100				0.600		I/DP	\$0.00
Air Voids	1	1,000			\$0.00	4.000				0.600		PF 1.0 Tons	0
		,,,,,,,		I/DP:	(\$186.82)	-)					2\	/ Adj.	\$0.00
Mix Design No 105895		105895		Process No	o 1 Gra	Grading S ()			Pr	ice Per	Ton \$44.9	90	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	17	17,000	85.731	0.99683	(\$242.11)	5.100	4.944	0.156	0.134	0.200	-0.066	CTS	0
Density	35	17,500	98.550	1.05500	\$17,286.50	94.000	94.506	0.506	0.704	1.100	-0.396	Tons I/DP	\$0.00
VMA	17	17,000	99.456	1.05000	\$3,816.50	14.600	14.671	0.071	0.474	0.600	-0.126	PF 1.0	Φ0.00
Air Voids	17	17,000	94.488	1.04396	\$13,422.55	4.000	4.088	0.088	0.647	0.600	0.047	Tons	0
				I/DP:	\$34,283.44	-					2 V	/ Adj.	\$0.00
Totals	: 1335	4		Tests	Tons	I/DP							
			AC	18	19,000	• .	12.11)		S I/DP				
			Density	37	18,500	\$17,09			\$0.00				
			VMA ir Voids	18	18,000	\$3,81			Adj				
			Density	18	18,000	\$13,42	22.55		\$0.00				
			Plan	Quant	19,145 I	Project I	DP :	\$34,096.6	2	CPFC	1.04162		

Comments: Final quantities not equal.

Subacco	unt: 13	355	STA I	77A-003	SH 177,	Arapaho	oe to Belleview Reg			gion: 6		Supplier: 33		
Mix Desig	n No	147032		Process No	o 1 Gra	ading S	()	PG	Pri	ce Per i	Ton \$42.0	00		
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er	
AC	3	3,285	31.023	0.71988	(\$3,864.80)	4.500	4.937	0.437	0.211	0.200	0.011	CTS	^	
Density	6	2,756	65.988	0.92305	(\$3,562.75)				1.546	1.100	0.446	Tons	0	
VMA	3	3,285	100.000	1.02500	\$344.92	14.300	14.300	0.000	0.100	0.600	-0.500	I/DP	\$0.00	
Air Voids	3	3,285	63.326	0.97124	(\$1,587.37)	3.000	2.013		0.454	0.600	-0.146	PF 1.0 Tons	0	
				I/DP:	(\$8,670.00)	-)					2\	/ Adj.	\$0.00	
———— Mix Desig	n No	147032		Process No	o 2 Gra	nding S	ing S () PG		Pri	ce Per 1	Fon \$42.0	00		
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er	
AC				0.34091	(\$1,464.37)					0.200	•	CTS	^	
Density	1	529		0.34091	(\$5,857.47)					1.100		Tons	0	
VMA				0.34091	(\$2,928.74)					0.600		I/DP	\$0.00	
Air Voids				0.34091	(\$4,393.10)					0.600		PF 1.0 Tons	0	
				I/DP:	(\$14,643.68)	-					2 V		822.45	
Totals	: 1335	5		Tests	Tons	I/DP								
			AC	3	3,285	(\$5,32	9.17)	CTS	I/DP					
			Density	7	3,285	(\$9,42	0.22)	;	\$0.00					
			VMA	3	3,285	(\$2,58	3.82)	2V	Adj					
			Air Voids Density	3	3,285	(\$5,98	0.47)	\$82	22.45					
			Plan	Quant	8,522	Project I/	DP (\$	22,491.23	3)	CPFC	0.83102			

Comments: 2 x V out test, 529 tons price reduced.

Subacco	Tests Tons Le AC 51 50,477 96. ensity 101 50,477 96. VMA 51 50,477 93. Design No 146978 Quantum Tests Tons Le AC 51 50,477 98.		STA 0	STA 0704-199 I-70, I-270			o E Regi				ion: 6 Si		13
Mix Desig	n No	105884	ŀ	Process No	o 1 Gr	ading S	()	PG	Pri	ice Per î	Fon \$37.5	55	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC	51	50,477	96.388	1.04974	\$9,426.91	5.000	5.055	0.055	0.135	0.200	-0.065	CTS	0
Density		•		1.06000	\$45,489.87	94.000	93.609	0.391	0.743	1.100	-0.357	Tons I/DP	
•		•	96.276	1.04895	\$9,277,47	14.100		0.055	0.583	0.600	-0.017	PF 1.0	\$0.00
Air Voids		•		1.03089	\$23,419.64	4.100	3.933	0.167	0.630	0.600	0.030	Tons	0
		·		I/DP:	\$87,613.89	_					2\	/ Adj.	\$0.00
Mix Design No 146978				Process No	ading S	0 1	PG	Pri	ice Per 1	Ton \$34.7	'5		
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	5	4,884	100.000	1.03000	\$509.16	5.000	5.110	0.110	0.076	0.200	-0.124	CTS	^
Density	10	4,884		0.92214	(\$5,285.40			1.380	1.118	1.100	0.018	Tons	0
VMA	5	4,884	89.575	1.03000	\$509.16		15.300	0.700	0.412	0.600	-0.188	I/DP	\$0.00
Air Voids	5	4,884		0.90081	(\$6,733.45		5.140	1.040	0.568	0.600	-0.032	PF 1.0 Tons	0
	-	,,== .		I/DP:	(\$11,000.53	<u></u>						⁄ Adj.	\$0.00
Totals	: 1335	6		Tests	Tons	I/DP							
			AC	56	55,361	\$9,93	6.07	CTS	I/DP				
		•	Density	111	55,361	\$40,20	4.47	1	\$0.00				
			VMA	56	55,361	\$9,78			Adj				
			Air Voids It Density	56	55,361	\$16,68	6.19		\$0.00				
			Plan	Quant	55,716	Project I	DP \$	76,613.3	6	CPFC	1.03710		

Comments:

Subaccoi	unt: 13	3439	NH 05	504-039	SH 50 Jc.	t I-25 to	Troy		Regio	on: 2	Si	upplier:	32
Mix Desig	ın No	64-22	,	Process No	o 1 Gra	ding S	()	PG	Pr	ice Per 1	Fon \$37.2	25	
	Tests	Tons	Quality Level	Pay Factor	I/DP	τv	Mean	Mean to TV	St Dev	. v	St Dev. - V	Oth	er
AC	11	7,821	84.424	1.00062	\$18.11	5.300	5.252	0.048	0.211	0.200	0.011	CTS	0
Density	16	7,821	99.717	1.05000	\$5,826.65	94.000	93.556	0.444	0.631	1.100	-0.469	Tons I/DP	_
VMA	16	7,821	93.688	1.04017	\$1,170.38	14.200	13.706	0.494	0.473	0.600	-0.127		\$0.00
Air Voids	16	7.821	57.665	0.79182	(\$24,260.05)	4.000	2.918		0.599	0.600	-0.001	PF 1.0 Tons	0
		.,		I/DP:	(\$17,244.91)	•						/ Adj.	\$0.00
Mix Desig	ın No	64-22-2	,	Process No	o 1 Gra	ding S	()	PG	Pr	ice Per 1	Ton \$37.2	<u> </u>	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	er
AC	9	4,194	75.541	0.95693	(\$672.82)	3.500	5.047	1.547	0.256	0.200	0.056	CTS	_
Density	9	4,194	98.102	1.04000	\$2,499.62		93.511	0.489	0.230	1.100	-0.284	Tons	0
VMA	9	4,194	85.641	1.01012	\$158.13	14.200		0.200	0.828	0.600	0.228	I/DP	\$0.00
Air Voids	9	4,194	70.088	0.92233	(\$4,850.34)	4.000	4.137	0.137	1.146	0.600	0.546	PF 1.0 Tons	0
All Volus	9	4,134	70.000	0.92233 I/DP:	(\$2,865.41)	•	4.157	0.157	1.140	0.000		/ Adj.	\$0.00
Mix Desig	ın No	QC7628		Process No	1 Gra	ding S	0	PG	Pr	ice Per 1	Ton \$42.8	30	
J		·	Quality	Pay		•	V	Mean			St Dev.	Oth	er
	Tests	Tons	Level	Factor	I/DP	TV	Mean		St Dev.		- V	CTS	
AC	29	12,366	69.028	0.85776	(\$7,528.01)	5.000	4.819	0.181	0.222	0.200	0.022	Tons	0
Density	26	12,366	100.000	1.05500	\$11,643.83		93.969	0.031	0.471	1.100	-0.629	I/DP	\$0.00
VMA	25	12,366	68.091	0.85617	(\$7,612.51)		13.032	0.968	0.489	0.600	-0.111	PF 1.0	
Air Voids	11	12,366	50.658	0.75738	(\$51,364.10)	4.000	2.809	1.191	0.534	0.600	-0.066	Tons	0
				I/DP:	(\$54,860.79)						2V	Adj.	\$0.00
Totals.	: 1343	9		Tests	Tons	I/DP							
			AC Density	49 51	24,381	(\$8,18 \$10.07	•		5 I/DP				
			VMA	51 50	24,381 24,381	\$19,97 (\$6,28			\$0.00 Adj				
		Δ	ir Voids	36	24,381	(\$6,∠6 (\$80,47			\$0.00				
			Density	50	27,001	(400,47	<i>-</i> /	•	ψυ.υυ				
			-		-								

Comments:

Subacco	ount: 1.	3480	STA I	1151-01	3	SH 115 H	Roca Roj	а		Regio	on: 2	S	upplier:	55
Mix Desi	ign No	237RR		Process	<i>N</i> o 1	Gra	ding S	0	PG	Pi	ice Per	Ton \$35.	32	
	Tests	Tons	Quality Level	Pay Facto		I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev. - V	Otl	ner
AC	4	3,255	69.884	0.978	22	(\$253.91)	5.400	5.643	3 0.243	0.096	0.200	-0.104	CTS	0
Density	, 7	3,255	90.682	1.035	00	\$1,428.28	94.000	92.843	3 1.157	0.658	1.100	-0.442	Tons I/DP	\$0.00
VMA	4	3,255	100.000	1.030	00	\$349.78	14.400	14.125	5 0.275	0.126	0.600	-0.474	PF 1.0	φυ.υυ
Air Voids	4	3,255	100.000	1.030	00	\$1,049.35	3.000	3.025	0.025	0.096	0.600	-0.504	Tons	0
				I/DP	:	\$2,573.50	-					2\	/ Adj.	\$0.00
Mix Desi	gn No	239RR		Process	No 1	Gra	nding S	0	PG	Pi	rice Per	Ton \$30.2	27	
	Tests	Tons	Quality Level	Pay Facto		I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev. - V	Oti	ner
AC	4	4,000	95.015	1.0300	00	\$363.24	5.400	5.570	0.170	0.096	0.200	-0.104	CTS Tons	0
Density	8	4,000	76.633	0.9689	98	(\$1,314.55)	94.000	92.737	7 1.263	0.987	1.100	-0.113	I/DP	\$0.00
VMA	4	4,000	100.000	1.0300	00	\$363.24	14.000	13.275	0.725	0.126	0.600	-0.474	PF 1.0	ψ0.00
Air Voids	4	4,000	61.471	0.9320	07 ((\$2,467.40)	3.000	1.950	1.050	0.436	0.600	-0.164	Tons	0
				I/DP		(\$3,055.47)	-					2\	/ Adj.	\$0.00
Mix Desi	gn No	240RR		Process	N o 1	Gra	nding S	()	PG	Pi	ice Per	Fon \$30.2	27	
	Tests	Tons	Quality Level	Pay Facto		I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Oth	ner
AC	2	1,964		1.0000		\$0.00	5.600				0.200	-	CTS	
Density		1,964	84.995	1.0300		\$624.23	94.000	92.975	5 1.025	0.929	1.100	-0.171	Tons	0
VMA	. 2	1,964		0.9166	57	(\$495.42)	14.400				0.600		I/DP PF 1.0	\$0.00
Air Voids	2	1,964		1.0000	00	\$0.00	3.000				0.600		Tons	0
				I/DP		\$128.81	-					2\	/ Adj.	\$0.00
———— Joint De	ensity		·											
Grad. P	rice	Proc. No Te	ests To	ns (Quality Level	Pay Factor	I/D	P	TV	Mean	Mean to TV	Std Dev	V	St Dev. - V
S \$:	30.27	1	3 5,	964 1	00.000	1.02500	\$670	5.99	92.000	91.270	0.730	2.511	1.600	0.911
S \$3	35.82	2	3 2,	389	44.379	0.84528	(\$1,98	5.94)	92.000	87.770	4.230	1.150	1.600	-0.450
s \$3	35.82	3	1	866		0.35938	(\$2,980	0.82)	92.000				1.600	
	10.40			Tools	Ta		I/DD						<u></u>	
I otal:	s: 1348	U	AC	Tests 10	To:	219	I/DP \$10	9.33	CT	S I/DP				
			Density	19		219		7.96		\$0.00				
			VMA	10		219	\$21	7.60	2١	/ Adj				
			Air Voids	10		219	(\$1,41			\$0.00				
		Join	t Density	7		²¹⁹ _	(\$4,28	9.77)						
			Plar	n Quant	17,	036 F	Project I/	DP	(\$4,642.9	3)	CPFC	0.98437		

Comments: Second half in 13479

Subacco	unt: 1.	3522	NH 28	852-012	US 285	Jct SH 17	PH 2		Region	n: 5	Si	upplier:	11
Mix Desig	n No	13522		Process I	lo 1 Gi	rading SX	() F	-G	Pri	ce Per 1	Ton \$31.3	30	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	ner
AC	117	113,295	87.504	0.97305	(\$9,557.70	7.600	7.582	0.018	0.195	0.200	-0.005	CTS	0
Density	221	107,489	92.700	1.00664	\$8,934.45	94.000	93.851	0.149	1.108	1.100	0.008	Tons I/DP	\$0.00
VMA	117	113,295	90.584	0.99861	(\$494.11	16.700	17.016	0.316	0.646	0.600	0.046	PF 1.0	\$0.00
Air Voids	117	113,295	88.851	0.98425	(\$22,346.21	3.500	3.491	0.009	0.757	0.600	0.157	Tons	5,806
				I/DP:	(\$23,463.5	7)					2V	/ Adj.	\$0.00
Totals	: 1352	22		Tests	Tons	I/DP							
			AC	117	113,295	(\$9,55	7.70)	CTS	I/DP				
			Density	221	113,295	\$8,93	4.45		\$0.00				
			VMA	117	113,295	(\$49	4.11)	2V	Adj				
			Air Voids t Density	117	113,295	(\$22,34	6.21)		\$0.00				
			Plan	Quant	110,324	Project I/	DP (\$:	23,463.5	7)	CPFC	0.99338		

Comments:

Subacco	unt: 13	3534	IM 07	01-156	Debeque l	East &)	West		Regio	n: 3	Si	upplier:	16
Mix Desig	n No	104503		Process No	o 1 Grad	ding SX	(100) F	°G	Pri	ce Per 1	on \$30.4	12	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Ot	her
AC	8	7,278	84.130	1.00657	\$145.51	5.900	5.761	0.139	0.160	0.200	-0.040	CTS Tons	493
Density	9	4,500	94.151	1.04000	\$2,190.24	94.000	93.556	0.444	1.038	1.100	-0.062		435.44 \$888.44)
VMA	8	7,278	73.779	0.95274	(\$1,046.27)	16.300	15.450	0.850	0.532	0.600	-0.068	PF 1.0	•
Air Voids	8	7,278	82.324	0.99819	(\$160.37)	3.600	2.812	0.788	0.439	0.600	-0.161	Tons	2,816
				I/DP:	\$240.67						2\	/ Adj.	\$0.00
Mix Desig	ın No	104503-2	2 1	Process No	o 1 Grad	ding SX	(100) F	G.	Pri	ce Per 1	Ton \$30.2	20	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V		her
AC	7	7,067	89.952	1.03462	\$738.83	5.800	5.851	0.051	0.190	0.200	-0.010	CTS Tons	500
Density	13	6,500	79.504	0.96842	(\$2,479.89)	94.000	93.315	0.685	1.439	1.100	0.339		1,245.81
VMA	7	7,067	100.000	1.03500	\$746.98	16.300	16.557	0.257	0.244	0.600	-0.356	PF 1.0	
Air Voids	7	7,067	74.176	0.96287	(\$3,170.03)	3.600	4.429	0.829	0.550	0.600	-0.050	Tons	0
				I/DP:	(\$5,409.92)				•		2 V	Adj.	\$0.00
Mix Desig	ın No	4503-3	ı	Process No	o 1 Grad	ding SX	(100) F	·G	Pri	ce Per 1	on \$30.4	12	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev. - V		her
AC	40	39,374	92.354	1.02368	\$2,835.94	5.900	5.873	0.027	0.170	0.200	-0.030	CTS Tons	500
Density	79	39,374	89.905	0.99597	(\$1,931.39)	94.000	93.409	0.591	1.072	1.100	-0.028	I/DP	\$214.44
VMA	40	39,374	87.065	0.98630	(\$1,640.90)	16.300	15.660	0.640	0.497	0.600	-0.103	PF 1.0	Ψ=
Air Voids	40	39,374	81.428	0.94434	(\$26,665.64)	3.600	3.067	0.533	0.725	0.600	0.125	Tons	0
				I/DP:	(\$27,187.55)						2V	Adj.	\$0.00
Mix Desig	ın No	64-22	ı	Process No	1 Grad	ding SX	(100) F	G 64-22	. Pri	ce Per 1	on \$28.5	56	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Ot	her
AC	16	16,776	73.197	0.91749	(\$3,953.45)	5.700	5.811	0.111	0.248	0.200	0.048	CTS	0
Density		0			\$0.00	94.000				1.100		Tons I/DP	\$0.00
VMA	16	16,776	99.028	1.05000	\$2,395.61	16.300	16.256	0.044	0.510	0.600	-0.090	PF 1.0	\$0.00
Air Voids	16	16,776	74.359	0.92576	(\$14,228.64)	3.600	4.337	0.737	0.697	0.600	0.097	Tons	16,776
				I/DP:	(\$15,786.48)						2V	Adj.	\$0.00
·													<u> </u>
Totals	: 1353	4		Tests	Tons	I/DP							
			AC Density	71 101	70,495 71,450	•	3.17)		10 81)				
			VMA	71	71,459 70,495	(\$2,22 \$45	5.42		19.81) Adj				
			ir Voids Density	71	70,495	(\$44,22			\$0.00				
		2	-	Quant	69,728 P	roject I/	DD 4	18,143.2		CPFC	0.97720		

Comments: Final quantities not equal

Subacco	unt: 13	3578	BR 38	25A-013	Bridge (Over Wolf	Creek		Region	n: 2	Si	upplier:	11
Mix Desig	jn No	253	ı	Process No	o 1 Gi	rading S	() F	° G	Pri	ce Per 1	Fon \$46.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
AC	7	6,415	100.000	1.03500	\$1,032.81	5.300	5.361	0.061	0.084	0.200	-0.116	CTS	0
Density	6	2,915	66.831	0.92840	(\$3,840.18	94.000	92.583	1.417	1.251	1.100	0.151	Tons I/DP	\$0.00
VMA	7	6,415	100.000	1.03500	\$1,032.81	14.400	14.600	0.200	0.200	0.600	-0.400	PF 1.0	Ψ0.00
Air Voids	7	6,415	94.870	1.03500	\$4,131.26	3.100	3.743	0.643	0.369	0.600	-0.231	Tons	3,500
				I/DP:	\$2,356.70)					2\	/ Adj.	\$0.00
Totals	: 1357	7.0		Tests	Tons	I/DP							
1 Othis	. 133/	O	AC	7	6,415	\$1,03	2.81	СТ	S I/DP				
			Density	6	6,415	(\$3,84			\$0.00				
			VMA	7	6,415	\$1,03	2.81	2V	Adj				
			Air Voids Density	7	6,415	\$4,13	1.26		\$0.00				
			Plan	Quant	6,415	Project I	DP :	\$2,356.7	0	CPFC	1.00799		

Comments: 3335 tons tested under gradation acceptance sub 13579.

Subacco	unt: 13	3817	NH 04	105-029	SH 40 K	Kansas - W	7		Regio	n: 1	S	upplier:	19
	ın No	1372021	,	Process No	o 1 Gi	ading SX	()	PG	Pr	ice Per î	Ton \$36.	05	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Ot	her
AC	38	37,338	99.240	1.05500	\$7,403.19	5.400	5.372	0.028	0.113	0.200	-0.087	CTS	^
Density	76	37,338	95.177	1.03804	\$20,480.34		93.683		0.972	1.100	-0.128	Tons	0
VMA	38	37,338	99.708	1.05500	\$7,403.19		14.718		0.349	0.600	-0.251	I/DP	\$0.00
Air Voids	38	37,338	99.754	1.05500	\$29,652.42		3.961		0.417	0.600		PF 1.0 Tons	0
				I/DP:	\$64,939.14	-					21	V Adj.	\$0.00
———— Mix Desig	ın No	1372022		Process No) 1 <i>Gi</i>	ading SX	()	PG	Pr	ice Per 1	Fon \$31.	4 5	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Ot	her
AC	35	34,066	96.276	1.05111	\$5,475.92	5.400	5.347		0.137	0.200	-0.063	CTS Tons	0
Density		0			\$0.00	94.000				1.100		I/DP	\$0.00
VMA	35	34,066	99.763	1.05500	\$5,892.57	15.000	14.649	0.351	0.317	0.600	-0.283	PF 1.0	φυ.υυ
Air Voids	35	34,066	97.340	1.05500	\$23,570.27	4.000	3.614	0.386	0.430	0.600	-0.170	Tons	34,066
				I/DP:	\$34,938.76	- 3					2\	√ Adj.	\$0.00
Totals	: 1381	7		Tests	Tons	I/DP							
			AC	73	71,404	\$12,87	9.11	CTS	S I/DP				
		1	Density	76	71,404	\$20,48			\$0.00				
			VMA	73	71,404	\$13,29			Adj				
			ir Voids Density	73	71,404	\$53,22	2.69		\$0.00				
			Plan	Quant	58,231	Project I/	DP \$	99,877.9	0	CPFC	1.04132		

Comments: MD 2022 leveling course.

Subacco	unt: 13	3863	STA R	300-089	Montros	e - Var L	ocation	es.	Regio	on: 3	S	upplier:	12
Mix Desig	gn No	294	,	Process No	o 1 Gr	ading SX	0	PG	Pr	ice Per	Ton \$38.:	34	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Otl	ner
AC Density	13	12,287 0		0.93907	(\$2,870.45 \$0.00	94.000	6.181	0.019	0.262	0.200 1.100	0.062	CTS Tons I/DP	0 \$0.00
VMA Air Voids	13 13	12,287 12,287		1.04500 0.99572	\$2,119.88 (\$806.26		15.415 4.300		0. 44 7 0.811	0.600 0.600	0.211	PF 1.0 Tons	12,287
				I/DP:	(\$1,556.83) 	, 	··········					/ Adj. 	\$0.00
Mix Desig	n No	299	,	Process No) 1 Gr	ading SX	()	PG	Pr	ice Per	Fon \$35.4	17	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	. v	St Dev. - V	Otl	ner
AC	27	26,341	90.887	1.02004	\$1,872.57	6.200	6.113	0.087	0.158	0.200	-0.042	CTS Tons	0
Density VMA	50 27	26,341 26,341	87.899 96.191	0.98844 1.05257	(\$4,318.63) \$4,912.01	94.000 15.400		0.140 0.319	1.292 0.506	1.100 0.600	0.192 -0.094	I/DP PF 1.0	\$0.00
Air Voids	27	26,341	92.873	1.03250 I/DP:	\$12,147.73 \$14,613.68	-	3.989	0.011	0.680	0.600	0.080 2\	Tons / Adj.	0 \$0.00
					***							-	
Totals	: 1386	3		Tests	Tons	I/DP							
			AC	40	38,628	、	7.88)		3 I/DP				
			Density	50	38,628	(\$4,31	,		\$0.00				
			VMA	40	38,628	\$7,03			Adj				
			Air Voids it Density	40	38,628	\$11,34	1.47		\$0.00				
			Plan	Quant	36,348	Project I/	DP \$	13,056.8	5	CPFC	1.00929		

Comments:

Subacco	unt: 13	3906	STA (71A-014	SH 71 N	of SH 14	4 S of N	eb.	Regio	n: 4	Si	upplier:	19
Mix Desig	gn No	06014BA		Process No	o 1 Gra	ding S	() I	° G	Pr	ice Per î	Fon \$37.	50	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	. v	St Dev. - V	Otl	ner
AC	29	29,276	90.901	1.01905	\$2,091.52	5.300	5.275	0.025	0.179	0.200	-0.021	CTS Tons	c
Density	59	29,276	98.238	1.05500	\$24,152.70	94.000	94.371	0.371	0.779	1.100	-0.321	I/DP	\$0.00
VMA	29	29,276	99.935	1.05500	\$6,038.17	13.700	13.514	0.186	0.343	0.600	-0.257	PF 1.0	φυ.υ
Air Voids	29	29,276	95.357	1.04702	\$20,650.12	3.000	2.941	0.059	0.616	0.600	0.016	Tons	C
				I/DP:	\$52,932.51	•					2\	/ Adj.	\$0.00
Mix Desig	gn No	106014A		Process No	o 1 Gra	ding S	() F	PG	Pri	ice Per 1	Fon \$34.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	ner
AC	44	43,066	88.999	0.99877	(\$180.72)	5.300	5.315	0.015	0.189	0.200	-0.011	CTS	_
Density	12	6,000	99.152	1.04500	\$3,672.00	94.000	94.025	0.025	0.876	1.100	-0.224	Tons	0
VMA	44	43,066	99.506	1.05500	\$8,053.34	14.100	13.859	0.241	0.384	0.600	-0.216	I/DP	\$0.00
Air Voids	44	43,066	88.461	0.99486	(\$3,008.79)	3.000	3.343	0.343	0.686	0.600	0.086	PF 1.0 Tons	0
		•		I/DP:	\$8,535.83	•						/ Adj.	\$0.00
Mix Desig	gn No	106014A		Process No	o 2 Gra	ding S	() F	PG	Pri	ce Per 1	on \$34.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC					\$0.00					0.200		CTS	^
Density	75	37,066	96.486	1.04833	\$24,363.97	94.000	94.101	0.101	0.955	1.100	-0.145	Tons	0
VMA		·			\$0.00					0.600		I/DP	\$0.00
Air Voids					\$0.00					0.600		PF 1.0 Tons	0
				I/DP:	\$24,363.97						2V	Adj.	\$0.00
Mix Desig	n No	106014B	,	Process No	o 1 Grad	ding S	() F	PG	Pri	ce Per 1	on \$37.5	50	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
AC	7	7,000	71.014	0.94437	(\$1,460.20)	5.200	5.283	0.083	0.273	0.200	0.073	CTS	0
Density	14	7,000	97.800	1.04500	\$4,725.00	94.000	94.364	0.364	0.862	1.100	-0.238	Tons I/DP	
VMA	7	7,000	100.000	1.03500	\$918.75	13.700	13.543	0.157	0.244	0.600	-0.356	PF 1.0	\$0.00
Air Voids	7	7,000	99.723	1.03500	\$3,675.00	3.000	2.974	0.026	0.569	0.600	-0.031	Tons	0
		•		I/DP:	\$7,858.55						2V	Adj.	\$0.00
Totals	: 1390	6		Tests	Tons	I/DP							
			AC	80	79,342		0.60		I/DP				
			Density	160	79,342	\$56,91			0.00				
		Air Joint D	VMA Voids Density	80 80	79,342 79,342	\$15,01 \$21,31			Adj 60.00				
			-	Quant	79,140 P	roject I/	DP ec	3,690.86		CPFC	1.03317		
					,	,	—· ψ≎	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	~: · · ·	1.00011		

Subacco	unt: 1.	3 <i>931</i>	IM 02	51-159	Walsenbu	rg - Noi	rth		Regio	n: 2	Si	upplier:	11
Mix Desig	gn No	193		Process No	o 1 Grad	ding S	0	PG	Pri	ice Per	Ton \$30.4	13	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	ner
AC	5	5,000	79.318	1.00503	\$76.50	5.400	5.294	0.106	0.226	0.200	0.026	CTS	^
Density	10	5,000	100.000	1.04500	\$2,738.70	94.000	93.800		0.620	1.100		Tons I/DP	0
VMA	5	5,000	47.726	0.80858	(\$2,912.53)		15.280		1.252	0.600	0.652	PF 1.0	\$0.00
Air Voids	4	4,000	65.612	0.95609	(\$2,137.86)	4.000		0.600	1.219	0.600	0.619	Tons	0
		·		I/DP:	(\$2,235.19)						2\	/ Adj.	\$0.00
Mix Desig	n No	193		Process No	o 2 Grad	ding S	()	PG	Pri	ice Per 1	Fon \$30.4	 13	
	Tests	Tons	Quality	Pay	I/DP	TV	Moon	Mean	St Dev.	v	St Dev.	Oth	ner
AC	16212	10115	Level	Factor		1 V	Mean	to TV	St Dev.		- V	CTS	
		•			(\$2,535.83)	04.000				0.200		Tons	0
Density VMA		0			(\$10,143.33)	94.000				1.100		I/DP	\$0.00
Air Voids	1	4 000		0.40007	(\$5,071.67)	4.000				0.600		PF 1.0	
All Volus	1	1,000		0.16667	(\$7,607.50)	4.000				0.600	21/2	Tons	0 \$ 19.47
				I/DP:	(\$25,358.33)							/ Adj.	φ1 3.4 7
Mix Desig	ın No	198	,	Process No	o 1 Grad	ding S	()	PG	Pri	ice Per 1	Fon \$30.4	13	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	85	84,999	97.562	1.05649	\$14,612,00	5.600	5.571	0.029	0.132	0.200	-0.068	CTS	^
Density	170	84,999	95.427	1.03610	\$37,345.92	94.000	93.359	0.641	0.805	1.100	-0.295	Tons I/DP	0
VMA	85	84,999	88.467	0.98382	(\$4,184.72)	14.000	14.132	0.132	0.754	0.600	0.154	I/DP PF 1.0	\$0.00
Air Voids	85	84,999	83.205	0.94078	(\$61,264.49)	4.000	3.821	0.179	0.854	0.600	0.254	Tons	0
				I/DP:	(\$13,491.29)						2V	Adj.	\$0.00
Totals	: 1393	1		Tests	Tons	I/DP							
			AC Density	90 180	89,999	\$12,15			I/DP				
			VMA	90	89,999 89,999	\$29,94 (\$12,16			\$0.00 Adi				
			Air Voids Density	90	89,999	(\$71,00	,		19.47				
			Plan	Quant	63,299 P	roject I/	DP (\$	41,065.34	4)	CPFC	0.98500		
						,"	⊸• (Ψ'	,000.0-	.,	· ·	2.23000		

Comments: 1000 tons 2 x V out.

Subacco	unt: 13	3936	STA 1	604-007	Beshour J	Junction	ı - West		Region	n: 2	Si	upplier:	53
Mix Desig	gn No	124A		Process No	2 Grad	ding S	() F	PG	Pric	ce Per	Ton \$28.5	54	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC				0.16700	(\$2,378.33)					0.200		CTS	c
Density				0.16700	(\$9,513.33)	94.000				1.100		Tons I/DP	\$0.00
VMA		1,000		0.16700	(\$4,756.67)					0.600		PF 1.0	φυ.υι
Air Voids		1,000		0.16700	(\$7,135.00)					0.600		Tons	0
				I/DP:	(\$23,783.33)						2\	/ Adj. (\$	671.46
Mix Desig	ın No	124A	-	Process No	4 Grad	ding S	() F	PG	Pric	e Per	Ton \$28.5	54	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
AC			20101	1 40101	(\$2,854.00)	•••		10 11		0.200	- •	CTS	
Density					(\$11,416.00)	94.000				1.100		Tons	0
VMA		1,000			(\$5,708.00)	54.000				0.600		I/DP	\$0.00
Air Voids		1,000			(\$8,562.00)					0.600		PF 1.0 Tons	0
7 7 0.00		1,000		I/DP:	(\$28,540.00)					0.000	2\	Adj.	\$0.00
Mix Desig	ın No	124A		Process No	5 Grad	ding S	() F	 PG	Prio	e Per	Ton \$28.5	 54	
•			Quality	Pay		_	V	Mean			St Dev.	Oth	er
	Tests	Tons	Level	Factor	I/DP	TV	Mean	to TV	St Dev.	V	- V	CTS	
AC				0.45800	(\$1,545.92)					0.200		Tons	0
Density				0.45800	(\$6,183.67)	94.000				1.100		I/DP	\$0.00
VMA		1,000		0.45800	(\$3,091.83)					0.600		PF 1.0	_
Air Voids				0.45800	(\$4,637.75)					0.600		Tons	0
				I/DP:	(\$15,459.17)						2V	Adj.	\$0.00
Mix Desig	ın No	214A		Process No	1 Grad	ding S	() F	PG	Pric	e Per	Ton \$28.5	i 4	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev. - V	Oth	er
AC	15	14,248	87.139	1.00760	\$309.18	5.500	5.418	0.082	0.184	0.200	-0.016	CTS Tons	0
Density	29	14,248	92.482	1.02917	\$4,743.88	94.000	94.048	0.048	1.145	1.100	0.045	I/DP	\$0.00
VMA	11	10,248	65.031	0.87846	(\$3,554.88)	14.000	13.018	0.982	0.549	0.600	-0.051	PF 1.0	*
Air Voids	12	11,248	73.125	0.93126	(\$8,827.27)	4.000	3.250	0.750	0.715	0.600	0.115	Tons	0
				I/DP:	(\$7,329.09)						2V	Adj.	\$0.00
Mix Desig	n No	214A	F	Process No	3 Grad	ling S	() ' F	PG	Pric	e Per 1	Ton \$28.5	4	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC				0.29200	(\$2,021.58)					0.200		CTS	^
Density				0.29200	(\$8,086.33)	94.000				1.100		Tons	0
VMA		1,000		0.29200	(\$4,043.17)					0.600		I/DP PF 1.0	\$0.00
Air Voids		1,000		0.29200	(\$6,064.75)					0.600			0
		.,		0.23200	(40,004.70)					0.000		Tons	•

Totals: 13936		Tests	Tons	I/DP			
	AC	15	14,248	(\$8,490.65)	CTS I/DP		
	Density	29	14,248	(\$30,455.45)	\$0.00		
	VMA	11	14,248	(\$21,154.55)	2V Adj		
	Air Voids	12	14,248	(\$35,226.77)	(\$671.46)		
J	oint Density						
	Plar	Quant	15,841	Project I/DP (\$9	95,998.88)	CPFC	0.76557

Comments: 4000 tons 2 x V out.

Subacco	unt: 14	1127	STA 0	30A-023	SH 30, Q	uincy N	orth		Regio	on: 1	Si	upplier:	41
Mix Desi	gn No	137122		Process No	1 Gra	ding S	() F	PG	Pr	ice Per	Ton \$41.8	39	1
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Oth	ner
AC	5	2,776	56.209	0.87461	(\$1,458.16)	5.300	5.040	0.260	0.229	0.200	0.029	CTS Tons	C
Density	10	2,776	96.755	1.04500	\$2,093.16	94.000	93.640	0.360	0.952	1.100	-0.148	I/DP	\$0.00
VMA	5	2,776	100.000	1.03000	\$348.86	13.800	13.900	0.100	0.245	0.600	-0.355	PF 1.0	Ψ0.00
Air Voids	5	2,776	99.477	1.03000	\$1,395.44	3.500	3.360	0.140	0.619	0.600	0.019	Tons	C
				I/DP:	\$2,379.30						2\	/ Adj.	\$0.00
Mix Desig	gn No	137123	,	Process No	1 Gra	ding S	() F	PG	Pr	ice Per T	Ton \$35.3	32	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	. v	St Dev. - V	Oth	ner
AC	3	2,238	58.054	0.94231	(\$456.05)	5.300	5.543	0.243	0.196	0.200	-0.004	CTS	0
Density	5	2,238	74.421	0.98343	(\$523.80)	94.000	92.580	1.420	0.823	1.100	-0.277	Tons I/DP	_
VMA	3	2,238	100.000	1.02500	\$197.62	15.000	15.033	0.033	0.981	0.600	0.381	PF 1.0	\$0.00
Air Voids	3	2,238	59.880	0.95286	(\$1,490.50)	3.500	4.367	0.867	0.945	0.600	0.345	Tons	0
				I/DP:	(\$2,272.73)						2 V	/ Adj.	\$0.00
Mix Desig	gn No	137123B	,	Process No	1 Gra	ding S	() F	PG	Pri	ice Per 1	Ton \$35.3	32	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	. v	St Dev.	Oth	er
AC	4	907	100.000	1.03000	\$96.11	5.300	5.370	0.070	0.133	0.200	-0.067	CTS	0
Density	3	907	52.429	0.90624	(\$1,201.41)	94.000	92.067	1.933	0.757	1.100	-0.343	Tons I/DP	
VMA	4	907	100.000	1.03000	\$96.11	15.000	15.200	0.200	0.594	0.600	-0.006	PF 1.0	\$0.00
Air Voids	4	907	43.689	0.80027	(\$2,559.42)	3.500	4.825	1.325	0.660	0.600	0.060	Tons	0
				I/DP:	(\$3,568.61)						2V	Adj.	\$0.00
Mix Desig	n No	137123C	F	Process No	1 Grad	ding S	() F	PG	Pri	ice Per 1	on \$35.3	32	
	Tests	Tons	Quality Level	Pay Factor	I/DP	τv	Mean	Mean to TV	St Dev.	. v	St Dev. - V	Oth	er
AC	12	11,057	83.897	0.99577	(\$165.09)	5.300	5.332	0.032	0.216	0.200	0.016	CTS	0
Density	23	11,057	98.120	1.05000	\$7,810.66	94.000	93.722	0.278	0.847	1.100	-0.253	Tons I/DP	\$0.00
VMA	12	11,057	97.952	1.04500	\$1,757.40	14.000	14.158	0.158	0.545	0.600	-0.055	PF 1.0	Ψ0.00
Air Voids	12	11,057	78.262	0.96382	(\$5,651.89)	3.500	3.667	0.167	0.970	0.600	0.370	Tons	0
				I/DP:	\$3,751.08						2V	'Adj.	\$0.00
Totals	: 1412	7			Tons	I/DP							
			AC		16,978	(\$1,98			I/DP				
			Density		16,978 16,078	\$8,17			\$0.00				
			VMA r Voids Density		16,978 16,978	\$2,39 (\$8,30			Adj \$0.00				
		551116	-	Quant	18,105 P	roject I/	DP	\$289.04	4	CPFC	1.00047		
					,	-,		+_50.0	•	· ·			

Totals for all Projects Projects with Bid Dates from 1/1/2002 to 12/31/2002.

Number of Projects: 20	Tests	Tons	I/DP	
AC	871	827,915	\$13,184.73	CTS I/DP
Density	/ 1518	827,879	\$203,292.45	(\$1,919.81)
VMA	868	826,915	\$44,126.76	2V Adj
Air Voids	855	826,915	(\$57,711.15)	\$170.46
Joint Density	7	9,219	(\$4,289.77)	
P	lan Quant	811.523	Total I/DP \$196.85	3.67

Calculated Pay Factor Composite and I/DP by Region, VA

Criteria: Projects with Bid Dates from 1/1/2002 to 12/31/2002.

PFC is back calculated from the Project's I/DP.

A Calculated Average Unit Price is used in the calculation.

				-		•			
<i>Region</i> Subacct.	<i>1</i> Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
13817	03/28/02	NH 0405-029	1	SX	71,404	\$33.86	1.04132	\$99,877.90	19
14127	12/19/02	STA 030A-02	1	s	16,978	\$36.39	1.00047	\$289.04	41
Region	1	Number of Pro	jects:	2	CPFC:	Maximum:	1.04132		
_		Total 1	ons:	88,382		Minimum:	1.00047		
						Average:	1.02090		
		Incentiv	/e/Disi	ncentive P	ayments		Sum I/DPs:	\$100,166.94	
		F	ositiv	e I/DPs:	2		Maximum:	\$99,877.90	
		N	egative	e I/DPs:	0		Minimum:	\$289.04	
						A	verage IDP:	\$50,083.47	
Region	ı 2				Total				
Subacct.	Bid Date	Project Code	Reg.	Reg. Grading		Average Price	Pay Factor Composite	Project I/DP	Supplier
12834	06/13/02	STA 012A-03	2	s	23,000	\$40.50	1.02820	\$26,264.60	17
13578	10/10/02	BR 385A-013	2	s	6,415	\$46.00	1.00799	\$2,356.70	11
13931	02/07/02	IM 0251-159	2	s	89,999	\$30.43	0.98500	(\$41,065.34)	11
13480	01/24/02	STA 1151-013	2	s	9,219	\$32.23	0.98437	(\$4,642.93)	55
13439	02/14/02	NH 0504-039	2	S	24,381	\$40.06	0.92325	(\$74,971.11)	32
13936	02/07/02	STA 1604-007	2	s	14,248	\$28.54	0.76392	(\$95,998.88)	53
Region	2	Number of Proj	ects:	6	CPFC:	Maximum:	1.02820		
		Total T	ons:	167,262		Minimum:	0.76392		
						Average:	0.94879		
		Incentiv	e/Disi	ncentive P	ayments		Sum I/DPs:	(\$188,056.96)	
		P	ositive	e I/DPs:	2		Maximum:	\$26,264.60	
		Ne	enative	· I/DPs:	4		Minimum:	(\$95,998.88)	
			940.		•		minimum.	(400,000.00)	

Region	n 3				Total	Average	Pay Factor			
Subacct.	Bid Date	Project Code	Reg.	Grading		Price	Composite	Project I/DP	Supplier	
13863	02/21/02	STA R300-08	3	SX	38,628	\$36.38	1.00929	\$13,056.85	12	
13534	08/29/02	IM 0701-156	3	SX	70,495	\$29.96	0.97720	(\$48,143.28)	16	
Region	3	Number of Pro	jects:	2	CPFC:	Maximum:	1.00929			
		Total 7	Tons:	109,123		Minimum:	0.97720			
						Average:	0.99324			
		Incenti	ve/Disi	ncentive	Payments		Sum I/DPs:	(\$35,086.43)		
		F	Positiv	e I/DPs:	1		Maximum:	\$13,056.85		
		N	egativ	e I/DPs:	1		Minimum:	(\$48,143.28)		
						A	\verage IDP:	(\$17,543.22)		
Region	n 4									
Subacct.		Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier	
13906	04/25/02	STA 071A-01	4	s	79,342	\$35.60	1.03317	\$93,690.86	19	
12404	04/25/02	STA 1131-004	4	S	75,069	\$37.25	1.01807	\$50,528.24	19	_
Region	4	Number of Pro	jects:	2	CPFC:	Maximum:	1.03317			
		Total 1	Tons:	154,411		Minimum:	1.01807			
						Average:	1.02562			
		Incentiv	ve/Disi	ncentive	Payments		Sum I/DPs:	\$144,219.10		
		F	Positive	e I/DPs:	2		Maximum:	\$93,690.86		
		N	egative	e I/DPs:	0		Minimum:	\$50,528.24		
						A	verage IDP:	\$72,109.55		
Region	$n \overline{5}$									
Subacct.	Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier	
13522	09/19/02	NH 2852-012	5	sx	113,295	\$31.30	0.99338	(\$23,463.57)	11	
Region	5	Number of Proj	jects:	1	CPFC:	Maximum:	0.99338			
		Total 1	ons:	113,295		Minimum:	0.99338			
						Average:	0.99338			
		Incentiv	/e/Disi	ncentive I	Payments		Sum I/DPs:	(\$23,463.57)		
		P	ositive	: I/DPs:	0		Maximum:	(\$23,463.57)		
		N	egative	//DPs:	1		Minimum:	(\$23,463.57)		
							verage IDP:	(\$23,463.57)		

Region	n 6								
Subacct.	Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
13354	02/14/02	STA 2854-087	6	s	19,000	\$44.50	1.04162	\$34,096.62	10
13067	06/27/02	IM 0703-268	6	s	34,130	\$39.75	1.03801	\$51,562.68	19
13356	01/24/02	STA 0704-199	6	s	55,361	\$37.30	1.03710	\$76,613.36	13
12287	08/01/02	NH 0853-038	6	s	53,480	\$37.89	1.02831	\$57,376.20	45
13278	12/12/02	STA 2873-112	6	s	12,549	\$38.00	1.02045	\$9,749.45	33
12864	02/21/02	IM 0761-179	6	s	17,637	\$42.00	0.98943	(\$7,832.49)	33
13355	12/12/02	STA 177A-00	6	s	3,285	\$42.00	0.83698	(\$22,491.23)	33
Region	6	Number of Proj	ects:	7	CPFC:	Maximum:	1.04162		
		Total T	ons:	195,442		Minimum:	0.83698		
						Average:	0.99884		
		Incentiv	e/Disi	ncentive P	ayments		Sum I/DPs:	\$199,074.59	
		P	ositive	e I/DPs:	5		Maximum:	\$76,613.36	
		Ne	egative	e I/DPs:	2		Minimum:	(\$22,491.23)	
						A	verage IDP:	\$28,439.23	
Statewi	de Total	s: 1/1/2002	to 12/	31/2002.					
	-	Number of Proj	ects:	20	CPFC	Maximum:	1.04162		
		Total To	ns: 8	27,915		Minimum:	0.76392		
						Average:	0.98788		
		Incentiv	e/Disir	ncentive P	ayments		Sum I/DPs:	\$196,853.67	
		P	ositive	I/DPs:	12		Maximum:	\$99,877.90	
				I/DDa.	8		Billio Imperome	(COE 000 00)	
		Ne	gative	WDFS:	0		Minimum:	(\$95,998.88)	

Asphalt Content - Process Information, VA

Criteria: Projects with Bid Dates from 1/1/2002 to 12/31/2002.

Processes with less than 3 tests not included.

~	7.		•
1 -r/	adin	σ .	٠.١
U 11	euere		w

Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	τv	Mean:	Mean to TV	St. Dev.	v	StDev - V
13578	2	6,415	253	\$46.00	1	6,415	7	100.000	1.03500	5.30	5.36	0.06	0.084	0.20	-0.12
13356	6	55,716	146978	\$34.75	1	4,884	5	100.000	1.03000	5.00	5.11	0.11	0.076	0.20	-0.12
14127	1	18,105	137123B	\$35.32	1	907	4	100.000	1.03000	5.30	5.37	0.07	0.133	0.20	-0.07
12287	6	59,892	147038	\$41.00	1	3,000	3	100.000	1.02500	5.40	5.43	0.03	0.178	0.20	-0.02
12404	4	75,105	131344	\$39.50	1	16,689	17	99.045	1.05000	5.30	5.40	0.10	0.093	0.20	-0.11
13067	6	29,601	990-2	\$39.75	1	15,228	15	98.999	1.05000	4.90	4.89	0.01	0.128	0.20	-0.07
13278	6	12,367	147010B	\$38.00	1	10,049	11	98.035	1.04500	5.10	5.14	0.04	0.137	0.20	-0.06
13931	2	63,299	198	\$30.43	1	84,999	85	97.562	1.05649	5.60	5.57	0.03	0.132	0.20	-0.07
13356	6	55,716	105884	\$37.55	1	50,477	51	96.388	1.04974	5.00	5.05	0.05	0.135	0.20	-0.06
13480	2	17,036	239RR	\$30.27	1	4,000	4	95.015	1.03000	5.40	5.57	0.17	0.096	0.20	-0.10
12834	2	23,845	227B	\$40.50	1	18,000	18	94.375	1.04338	5.80	5.76	0.04	0.159	0.20	-0.04
12404	4	75,105	152279	\$39.50	1	18,171	18	93.554	1.03916	5.30	5.37	0.07	0.154	0.20	-0.05
12287	6	59,892	147038	\$41.00	2	17,213	18	93.369	1.03820	5.40	5.31	0.09	0.143	0.20	-0.06
12404	4	75,105	131343	\$35.29	1	36,197	36	91.386	1.01857	5.30	5.40	0.10	0.144	0.20	-0.06
13906	4	79,140	06014BA	\$37.50	1	29,276	29	90.901	1.01905	5.30	5.28	0.03	0.179	0.20	-0.02
13906	4	79,140	106014A	\$34.00	1	43,066	44	88.999	0.99877	5.30	5.32	0.01	0.189	0.20	-0.01
13936	2	15,841	214A	\$28.54	1	14,248	15	87.139	1.00760	5.50	5.42	0.08	0.184	0.20	-0.02
13067	6	29,601	147004	\$39.75	1	18,902	18	87.089	1.00338	5.20	5.22	0.02	0.201	0.20	0.00
13354	6	19,145	105895	\$44.90	1	17,000	17	85.731	0.99683	5.10	4.94	0.16	0.134	0.20	-0.07
12864	6	28,694	146992	\$42.00	1	12,615	13	84.457	0.99672	4.80	4.77	0.03	0.214	0.20	0.01
13439	2	24,169	64-22	\$37.25	1	7,821	11	84.424	1.00062	5.30	5.25	0.05	0.211	0.20	0.01
14127	1	18,105	137123C	\$35.32	1	11,057	12	83.897	0.99577	5.30	5.33	0.03	0.216	0.20	0.02
12287	6	59,892	1470001	\$33.65	1	24,649	24	79.617	0.94682	5.40	5.34	0.06	0.230	0.20	0.03
13931	2	63,299	193	\$30.43	1	5,000	5	79.318	1.00503	5.40	5.29	0.11	0.226	0.20	0.03
12404	4	75,105	10615	\$35.29	1	4,012	5	78.829	1.00302	5.70	5.54	0.16	0.169	0.20	-0.03
13439	2	24,169	64-22-2	\$37.25	1	4,194	9	75.541	0.95693	3.50	5.05	1.55	0.256	0.20	0.06
13906	4	79,140	106014B	\$37.50	1	7,000	7	71.014	0.94437	5.20	5.28	0.08	0.273	0.20	0.07
13480	2	17,036	237RR	\$35.82	1	3,255	4	69.884	0.97822	5.40	5.64	0.24	0.096	0.20	-0.10
13278	6	12,367	147010	\$38.00	1	2,500	3	69.059	0.99734	5.10	4.84	0.26	0.067	0.20	-0.13
13439	2	24,169	QC7628	\$42.80	1	12,366	29	69.028	0.85776	5.00	4.82	0.18	0.222	0.20	0.02
14127	1	18,105	137123	\$35.32	1	2,238	3	58.054	0.94231	5.30	5.54	0.24	0.196	0.20	0.00
14127	1	18,105	137122	\$41.89	1	2,776	5	56.209	0.87461	5.30	5.04	0.26	0.229	0.20	0.03
12834	2	23,845	227	\$40.50	1	5,000	5	51.738	0.84102	5.80	5.51	0.29	0.205	0.20	0.00

Gradii	ng: S	5													
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	TV	Mean:	Mean to TV	St. Dev	. v	StDev - V
13355	6	8,522	147032	\$42.00	1	3,285	3	31.023	0.71988	4.50	4.94	0.44	0.211	0.20	0.01
Totals	Gra	ding: .	S					Quality Level	Pay Factor			Mean to TV	St. Dev	. V	StDev - V
			Tons: 5	16,489			Best:	100.000	1.05649			0.01	0.067	0.20	-0.13
		Pro	cesses:	34		1	Worst:	31.023	0.71988			1.55	0.273	0.20	0.07
			Tests:	553	Weig	ghted Av	erage:	89,838	1.01441			0.08	0.162	0.20	-0.04
Gradii	ıg: S	SX													
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	τv	Mean:	Mean to TV	St. Dev	. V	StDev - V
13817	1	58,231	1372021	\$36.05	1	37,338	38	99.240	1.05500	5.40	5.37	0.03	0.113	0.20	-0.09
13817	1	58,231	1372022	\$31.45	1	34,066	35	96.276	1.05111	5.40	5.35	0.05	0.137	0.20	-0.06
13534	3	69,728	4503-3	\$30.42	1	39,374	40	92.354	1.02368	5.90	5.87	0.03	0.170	0.20	-0.03
13863	3	36,348	299	\$35.47	1	26,341	27	90.887	1.02004	6.20	6.11	0.09	0.158	0.20	-0.04
13534	3	69,728	104503-2	\$30.20	1	7,067	7	89.952	1.03462	5.80	5.85	0.05	0.190	0.20	-0.01
13522	5	110,324	13522	\$31.30	1	113,295	117	87.504	0.97305	7.60	7.58	0.02	0.195	0.20	-0.01
13534	3	69,728	104503	\$30.42	1	7,278	8	84.130	1.00657	5.90	5.76	0.14	0.160	0.20	-0.04
12287	6	59,892	147064	\$42.75	1	7,000	7	79.880	0.99276	5.80	5.69	0.11	0.214	0.20	0.01
13863	3	36,348	294	\$38.34	1	12,287	13	74.850	0.93907	6.20	6.18	0.02	0.262	0.20	0.06
13534	3	69,728	64-22	\$28.56	1	16,776	16	73.197	0.91749	5.70	5.81	0.11	0.248	0.20	0.05
Totals	Gra	ding: S	SX					Quality Level	Pay Factor			Mean to TV	St. Dev.	. v	StDev - V
			Tons: 30	0,822			Best:	99.240	1.05500			0.02	0.113	0.20	-0.09
		Pro	cesses:	10		1	Norst:	73.197	0.91749			0.14	0.262	0.20	0.06
			Tests:	308	Weig	hted Av	erage:	89.369	1.00103			0.04	0.177	0.20	-0.02
Aspha	alt C	ontent	- Totals	1/1/20	02 to 12	2/31/200	2.					-	<u>-</u>		
								Quality Level	Pay Factor		,	Mean to TV	St. Dev.	v	StDev - V
		•	Tons : 81	7,311			Best:	100.000	1.05649			0.01	0.067	0.20	-0.13
		Pro	cesses:	44		٧	Vorst:	31.023	0.71988			1.55	0.273	0.20	0.07
			Tests:	861	Weig	hted Av	erage:	89.665	1.00949			0.06	0.167	0.20	-0.03

VMA - Process Information

Criteria: Projects with Bid Dates from 1/1/2002 to 12/31/2002.

Processes with less than 3 tests not included.

Grading: S

Subacct.	Reg.	Plan Quant.	Mix Design	Price	Process No.	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	٧	StDev - V
12404	4	75,105	131343	\$35.29	1	36,197	36	100.000	1.05500	14.90	14.97	0.07	0.257	0.60	-0.343
12404	4	75,105	152279	\$39.50	1	18,171	18	100.000	1.05000	14.00	14.21	0.21	0.245	0.60	-0.355
12404	4	75,105	131344	\$39.50	1	16,689	17	100.000	1.05000	14.80	14.84	0.03	0.335	0.60	-0.265
13578	2	6,415	253	\$46.00	1	6,415	7.	100.000	1.03500	14.40	14.60	0.20	0.200	0.60	-0.400
13906	4	79,140	106014B	\$37.50	1	7,000	7	100.000	1.03500	13.70	13.54	0.16	0.244	0.60	-0.356
13480	2	17,036	239RR	\$30.27	1	4,000	4	100.000	1.03000	14.00	13.27	0.73	0.126	0.60	-0.474
13480	2	17,036	237RR	\$35.82	1	3,255	4	100.000	1.03000	14.40	14.13	0.27	0.126	0.60	-0.474
14127	1	18,105	137122	\$41.89	1	2,776	5	100.000	1.03000	13.80	13.90	0.10	0.245	0.60	-0.355
12404	4	75,105	10615	\$35.29	1	4,012	5	100.000	1.03000	14.50	14.18	0.32	0.432	0.60	-0.168
14127	1	18,105	137123B	\$35.32	1	907	4	100.000	1.03000	15.00	15.20	0.20	0.594	0.60	-0.006
13355	6	8,522	147032	\$42.00	1	3,285	3	100.000	1.02500	14.30	14.30	0.00	0.100	0.60	-0.500
13278	6	12,367	147010	\$38.00	1	2,500	3	100.000	1.02500	14.10	14.60	0.50	0.200	0.60	-0.400
12287	6	59,892	147038	\$41.00	1	3,000	3	100.000	1.02500	14.00	14.17	0.17	0.551	0.60	-0.049
14127	1	18,105	137123	\$35.32	1	2,238	3	100.000	1.02500	15.00	15.03	0.03	0.981	0.60	0.381
13906	4	79,140	06014BA	\$37.50	1	29,276	29	99.935	1.05500	13.70	13.51	0.19	0.343	0.60	-0.257
12287	6	59,892	1470001	\$33.65	1	24,649	24	99.541	1.05000	14.60	14.43	0.17	0.421	0.60	-0.179
13906	4	79,140	106014A	\$34.00	1	43,066	44	99.506	1.05500	14.10	13.86	0.24	0.384	0.60	-0.216
13354	6	19,145	105895	\$44.90	1	17,000	17	99.456	1.05000	14.60	14.67	0.07	0.474	0.60	-0.126
13067	6	29,601	147004	\$39.75	1	18,902	18	99.395	1.05000	14.30	13.84	0.46	0.451	0.60	-0.149
12834	2	23,845	227B	\$40.50	1	18,000	18	98.682	1.05000	14.40	14.34	0.06	0.519	0.60	-0.081
14127	1	18,105	137123C	\$35.32	1	11,057	12	97.952	1.04500	14.00	14.16	0.16	0.545	0.60	-0.055
13356	6	55,716	105884	\$37.55	1	50,477	51	96.276	1.04895	14.10	14.15	0.05	0.583	0.60	-0.017
12287	6	59,892	147038	\$41.00	2	17,213	18	94.496	1.04400	14.00	13.53	0.47	0.466	0.60	-0.134
12834	2	23,845	227	\$40.50	1 .	5,000	5	94.214	1.03000	14.40	14.62	0.22	0.698	0.60	0.098
13067	6	29,601	990-2	\$39.75	1	15,228	15	93.839	1.04103	14.90	14.51	0.39	0.536	0.60	-0.064
13439	2	24,169	64-22	\$37.25	1	7,821	16	93.688	1.04017	14.20	13.71	0.49	0.473	0.60	-0.127
13278	6	12,367	147010B	\$38.00	1	10,049	11	91.930	1.03521	14.60	14.31	0.29	0.655	0.60	0.055
13356	6	55,716	146978	\$34.75	1	4,884	5	89.575	1.03000	14.60	15.30	0.70	0.412	0.60	-0.188
13931	2	63,299	198	\$30.43	1	84,999	85	88.467	0.98382	14.00	14.13	0.13	0.754	0.60	0.154
12864	6	28,694	146992	\$42.00	1	12,615	13	85.742	1.00357	14.40	13.78	0.62	0.540	0.60	-0.060
13439	2	24,169	64-22-2	\$37.25	1	4,194	9	85.641	1.01012	14.20	14.00	0.20	0.828	0.60	0.228

Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	v	StDe - V
13439	2	24,169	QC7628	\$42.80	1	12,366	25	68.091	0.85617	14.00	13.03	0.97	0.489	0.60	-0.11
13936	2	15,841	214A	\$28.54	1	10,248	11	65.031	0.87846	14.00	13.02	0.98	0.549	0.60	-0.05
13931	2	63,299	193	\$30.43	1	5,000	5	47.726	0.80858	14.00	15.28	1.28	1.252	0.60	0.65
Totals	Gra	ding: S	S					Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDe
			Tons: 5	12,489			Best:	100.000	1.05500			0.00	0.100	0.60	-0.50
		Pro	ocesses:	34		V	Norst:	47.726	0.80858			1.28	1.252	0.60	0.65
			Tests:	550	Wei	ghted Av	erage:	94.296	1.02513			0.25	0.495	0.60	-0.10
<i>Gradii</i> Subacct.	ng: N	Plan Quant.	Mix Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	٧	StDe - V
13534	3	69,728	104503-2	\$30.20	1	7,067	7	100.000	1.03500	16.30	16.56	0.26	0.244	0.60	-0.35
12287	6	59,892	147064	\$42.75	1	7,000	7	100.000	1.03500	14.80	15.13	0.33	0.340	0.60	-0.26
13863	3	36,348	294	\$38.34	1	12,287	13	99.911	1.04500	15.40	15.41	0.02	0.447	0.60	-0.15
13817	1	58,231	1372022	\$31.45	1	34,066	35	99.763	1.05500	15.00	14.65	0.35	0.317	0.60	-0.28
13817	1	58,231	1372021	\$36.05	1	37,338	38	99.708	1.05500	15.00	14.72	0.28	0.349	0.60	-0.25
13534	3	69,728	64-22	\$28.56	1	16,776	16	99.028	1.05000	16.30	16.26	0.04	0.510	0.60	-0.09
13863	3	36,348	299	\$35.47	1	26,341	27	96.191	1.05257	15.40	15.08	0.32	0.506	0.60	-0.094
13522	5	110,324	13522	\$31.30	1	113,295	117	90.584	0.99861	16.70	17.02	0.32	0.646	0.60	0.04
13534	3	69,728	4503-3	\$30.42	1	39,374	40	87.065	0.98630	16.30	15.66	0.64	0.497	0.60	-0.10
13534	3	69,728	104503	\$30.42	1	7,278	8	73.779	0.95274	16.30	15.45	0.85	0.532	0.60	-0.068
	C	dina. C	TV.												
Totals	Gra	aing: S)A					Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDe

Processes:

Tests:

10

308

0.646 0.60 0.046

0.505 0.60 -0.095

0.85

0.34

Worst:

Weighted Average:

73.779 0.95274

93.672 1.02046

VMA - Totals 1/1/2002 to 12/31/2002.

			Quality Level	Pay Factor	Mean to TV St. Dev.	StDev V - V
Tons:	813,311	Best:	100.000	1.05500	0.00 0.100	0.60 -0.500
Processes:	44	Worst:	47.726	0.80858	1.28 1.252	0.60 0.652
Tests:	858	Weighted Average:	94.065	1.02340	0.28 0.498	0.60 -0.102

Air Voids - Process Information

Criteria: Projects with Bid Dates from 1/1/2002 to 12/31/2002.

Processes with less than 3 tests not included.

	7.	•
(Tra	ding	

		-													
Sub.	Reg.	Plan Quant.	Mix Design	Price	Proce No		Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	V	StDev -V
12287	6	59,892	147038	\$41.00	1	3,000	3	100.000	1.02500	3.30	3.23	0.07	0.462	0.60	-0.138
13480	2	17,036	237RR	\$35.82	1	3,255	4	100.000	1.03000	3.00	3.03	0.03	0.096	0.60	-0.504
12404	4	75,105	152279	\$39.50	1	18,171	18	99.751	1.05000	3.40	3.46	0.06	0.444	0.60	-0.156
13906	4	79,140	106014B	\$37.50	1	7,000	7	99.723	1.03500	3.00	2.97	0.03	0.569	0.60	-0.031
12404	4	75,105	131343	\$35.29	1	36,197	36	99.719	1.05500	4.10	4.25	0.15	0.397	0.60	-0.203
14127	1	18,105	137122	\$41.89	1	2,776	5	99.477	1.03000	3.50	3.36	0.14	0.619	0.60	0.019
12834	2	23,845	227B	\$40.50	1	18,000	18	98.571	1.05000	3.50	3.58	0.08	0.520	0.60	-0.080
12404	4	75,105	131344	\$39.50	1	16,689	17	97.570	1.05000	4.30	4.00	0.30	0.478	0.60	-0.122
13067	6	29,601	990-2	\$39.75	1	15,228	15	96.825	1.05000	4.00	3.88	0.12	0.583	0.60	-0.017
13906	4	79,140	06014BA	\$37.50	1	29,276	29	95.357	1.04702	3.00	2.94	0.06	0.616	0.60	0.016
13578	2	6,415	253	\$46.00	1	6,415	7	94.870	1.03500	3.10	3.74	0.64	0.369	0.60	-0.231
13354	6	19,145	105895	\$44.90	1	17,000	17	94.488	1.04396	4.00	4.09	0.09	0.647	0.60	0.047
13356	6	55,716	105884	\$37.55	1	50,477	51	93.736	1.03089	4.10	3.93	0.17	0.630	0.60	0.030
12287	6	59,892	1470001	\$33.65	1	24,649	24	92.664	1.03237	3.00	3.19	0.19	0.658	0.60	0.058
12287	6	59,892	147038	\$41.00	2	17,213	18	90.674	1.02377	3.30	2.87	0.43	0.589	0.60	-0.011
13067	6	29,601	147004	\$39.75	1	18,902	18	88.891	1.01380	3.00	3.31	0.31	0.701	0.60	0.101
13906	4	79,140	106014A	\$34.00	1	43,066	44	88.461	0.99486	3.00	3.34	0.34	0.686	0.60	0.086
13278	6	12,367	147010B	\$38.00	1	10,049	11	87.779	1.01696	3.00	3.10	0.10	0.799	0.60	0.199
12864	6	28,694	146992	\$42.00	1	12,615	13	85.684	1.00327	4.40	3.85	0.55	0.606	0.60	0.006
13931	2	63,299	198	\$30.43	1	84,999	85	83.205	0.94078	4.00	3.82	0.18	0.854	0.60	0.254
12404	4	75,105	10615	\$35.29	1	4,012	5	81.634	1.01411	3.00	2.60	0.40	0.857	0.60	0.257
14127	1	18,105	137123C	\$35.32	1	11,057	12	78.262	0.96382	3.50	3.67	0.17	0.970	0.60	0.370
13278	6	12,367	147010	\$38.00	1	2,500	3	75.612	1.02035	3.00	3.90	0.90	0.361	0.60	-0.239
13936	2	15,841	214A	\$28.54	1	11,248	12	73.125	0.93126	4.00	3.25	0.75	0.715	0.60	0.115
13439	2	24,169	64-22-2	\$37.25	1	4,194	9	70.088	0.92233	4.00	4.14	0.14	1.146	0.60	0.546
13931	2	63,299	193	\$30.43	1	4,000	4	65.612	0.95609	4.00	4.60	0.60	1.219	0.60	0.619
13355	6	8,522	147032	\$42.00	1	3,285	3	63.326	0.97124	3.00	2.01	0.99	0.454	0.60	-0.146
13480	2	17,036	239RR	\$30.27	1	4,000	4	61.471	0.93207	3.00	1.95	1.05	0.436	0.60	-0.164
13356	6	55,716	146978	\$34.75	1	4,884	5	59.977	0.90081	4.10	5.14	1.04	0.568	0.60	-0.032
14127	1	18,105	137123	\$35.32	1	2,238	3	59.880	0.95286	3.50	4.37	0.87	0.945	0.60	0.345
13439	2	24,169	64-22	\$37.25	1	7,821	16	57.665	0.79182	4.00	2.92	1.08	0.599	0.60	-0.001
12834	2	23,845	227	\$40.50	1	5,000	5	53.518	0.85472	3.00	4.14	1.14	0.607	0.60	0.007
13439	2	24,169	QC7628	\$42.80	1	12,366	11	50.658	0.75738	4.00	2.81	1.19	0.534	0.60	-0.066

14127	1	18,105	137123B	\$35.32	1	907	4	43.689	0.80027	3.50	4.82	1.32	0.660	0.60	0.060
Total	s Gra	iding: S	5				•	Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V
			Tons: 51	2,489			Best:	100.000	1.05500			0.03	0.096	0.60	-0.504
		Pro	cesses:	34			Worst:	43.689	0.75738			1.32	1.219	0.60	0.619
			Tests:	536	Wei	ghted A	verage:	87.872	0.99643			0.29	0.649	0.60	0.049
Gra	ding:	SX													
Sub.	Reg.	Plan Quant.	Mix Design	Price	Proce No		Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	V	StDev -V
13817	1	58,231	1372021	\$36.05	1	37,338	38	99.754	1.05500	4.00	3.96	0.04	0.417	0.60	-0.183
13817	1	58,231	1372022	\$31.45	1	34,066	35	97.340	1.05500	4.00	3.61	0.39	0.430	0.60	-0.170
13863	3	36,348	299	\$35.47	1	26,341	27	92.873	1.03250	4.00	3.99	0.01	0.680	0.60	0.080
13522	5	110,324	13522	\$31.30	1	13,295	117	88.851	0.98425	3.50	3.49	0.01	0.757	0.60	0.157
12287	6	59,892	147064	\$42.75	1	7,000	7	88.339	1.02885	3.40	3.37	0.03	0.818	0.60	0.218
13863	3	36,348	294	\$38.34	1	12,287	13	84.272	0.99572	4.00	4.30	0.30	0.811	0.60	0.211
13534	3	69,728	104503	\$30.42	1	7,278	8	82.324	0.99819	3.60	2.81	0.79	0.439	0.60	-0.161
13534	3	69,728	4503-3	\$30.42	1	39,374	40	81.428	0.94434	3.60	3.07	0.53	0.725	0.60	0.125
13534	3	69,728	64-22	\$28.56	1	16,776	16	74.359	0.92576	3.60	4.34	0.74	0.697	0.60	0.097
13534	3	69,728	104503-2	\$30.20	1	7,067	7	74.176	0.96287	3.60	4.43	0.83	0.550	0.60	-0.050
Total	s Gra	ding: S	SX					Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V
		1	Tons: 30	0,822			Best:	99.754	1.05500			0.01	0.417	0.60	-0.183
		Pro	cesses:	10			Worst:	74.176	0.92576			0.83	0.818	0.60	0.218
			Tests:	308	Wei	ghted Av	/erage:	89.036	0.99812			0.22	0.655	0.60	0.055
Air V	oids -	- Totals	1/1/2002	2 to 12/3	1/2002	2.				****		***			
								Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V
		•	Tons: 81	3,311			Best:	100.000	1.05500			0.01	0.096	0.60	-0.504
		Pro	cesses:	44			Worst:	43.689	0.75738			1.32	1.219	0.60	0.619
			Tests:	844	Wei	ghted A	verage:	88.303	0.99706			0.26	0.651	0.60	0.051

Mat Density - Process Information, Voids Acceptance

Criteria: Projects with Bid Dates from 1/1/2002 to 12/31/2002.

Processes with less than 3 tests not included. Compaction Test Sections not included.

Gradi	ng: l	S					٠								
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proc No		Tests	Quality Level	Pay Factor	_ τν	Mean	Mean to TV	St. Dev.	V	StDev - V
13439	2	24,169	QC7628	\$42.80	1	12,366	26	100.000	1.05500	94.000	93.969	0.031	0.471	1.100	-0.629
13931	2	63,299	193	\$30.43	1	5,000	10	100.000	1.04500	94.000	93.800	0.200	0.620	1.100	-0.480
13278	6	12,367	147010B	\$38.00	1	10,049	20	99.994	1.05000	94.000	94.060	0.060	0.600	1.100	-0.500
12287	6	59,892	1470001	\$33.65	1	24,649	49	99.763	1.05500	94.000	93.978	0.022	0.687	1.100	-0.413
13439	2	24,169	64-22	\$37.25	1	7,821	16	99.717	1.05000	94.000	93.556	0.444	0.631	1.100	-0.469
13906	4	79,140	106014A	\$34.00	1	6,000	12	99.152	1.04500	94.000	94.025	0.025	0.876	1.100	-0.224
12287	6	59,892	147038	\$41.00	2	17,213	35	99.047	1.05500	94.000	93.986	0.014	0.805	1.100	-0.295
13067	6	29,601	990-2	\$39.75	1	15,228	29	99.023	1.05500	94.000	94.690	0.690	0.585	1.100	-0.515
13354	6	19,145	105895	\$44.90	1	17,500	35	98.550	1.05500	94.000	94.506	0.506	0.704	1.100	-0.396
13356	6	55,716	105884	\$37.55	1	50,477	101	98.510	1.06000	94.000	93.609	0.391	0.743	1.100	-0.357
13906	4	79,140	6014BA	\$37.50	1	29,276	59	98.238	1.05500	94.000	94.371	0.371	0.779	1.100	-0.321
14127	1	18,105	37123C	\$35.32	1	11,057	23	98.120	1.05000	94.000	93.722	0.278	0.847	1.100	-0.253
13439	2	24,169	64-22-2	\$37.25	1	4,194	9	98.102	1.04000	94.000	93.511	0.489	0.816	1.100	-0.284
13906	4	79,140	106014B	\$37.50	1	7,000	14	97.800	1.04500	94.000	94.364	0.364	0.862	1.100	-0.238
14127	1	18,105	137122	\$41.89	1	2,776	10	96.755	1.04500	94.000	93.640	0.360	0.952	1.100	-0.148
12834	2	23,845	227B	\$40.50	1	17,500	35	96.697	1.05378	94.000	93.666	0.334	0.901	1.100	-0.199
13906	4	79,140	06014A	\$34.00	2	37,066	75	96.486	1.04833	94.000	94.101	0.101	0.955	1.100	-0.145
12834	2	23,845	227	\$40.50	1	5,500	11	95.748	1.04500	94.000	93.473	0.527	0.901	1.100	-0.199
13931	2	63,299	198	\$30.43	1	84,999	170	95.427	1.03610	94.000	93.359	0.641	0.805	1.100	-0.295
13067	6	29,601	147004	\$39.75	1	18,902	32	94.621	1.04149	94.000	93.437	0.563	0.899	1.100	-0.201
13936	2	15,841	214A	\$28.54	1	14,248	29	92.482	1.02917	94.000	94.048	0.048	1.145	1.100	0.045
13480	2	17,036	237RR	\$35.82	1	3,255	7	90.682	1.03500	94.000	92.843	1.157	0.658	1.100	-0.442
12864	6	28,694	146992	\$42.00	1	12,615	25	89.730	1.01385	94.000	93.480	0.520	1.128	1.100	0.028
12404	4	75,105	131344	\$39.50	1	16,689	33	87.075	0.99082	94.000	92.852	1.148	0.755	1.100	-0.345
12404	4	75,105	152279	\$39.50	1	17,541	36	86.604	0.98529	94.000	93.144	0.856	1.027	1.100	-0.073
12404	4	75,105	131343	\$35.29	1	36,197	72	85.516	0.96127	94.000	93.043	0.957	0.982	1.100	-0.118
13480	2	17,036	240RR	\$30.27	1	1,964	4	84.995	1.03000	94.000	92.975	1.025	0.929	1.100	-0.171
12404	4	75,105	10615	\$35.29	1	4,012	10	82.639	0.99372	94.000	93.760	0.240	1.486	1.100	0.386
12287	6	59,892	147038	\$41.00	1	3,000	6	81.669	1.00619	94.000	93.000	1.000	1.081	1.100	-0.019
13480	2	17,036	239RR	\$30.27	1	4,000	8	76.633	0.96898	94.000	92.737	1.263	0.987	1.100	-0.113
14127	1	18,105	137123	\$35.32	1	2,238	5	74.421	0.98343	94.000	92.580	1.420	0.823	1.100	-0.277
13356	6	55,716	146978	\$34.75	1	4,884	10	70.516	0.92214	94.000	92.620	1.380	1.118	1.100	0.018
13578	2	6,415	253	\$46.00	1	2,915	6	66.831	0.92840	94.000	92.583	1.417	1.251	1.100	0.151

Gradi	ng:	S													
Subacct.	Reg.	Plan Quant	Mix . Design	Price	Proce No		Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	v	StDev - V
13355	6	8,522	147032	\$42.00	1	2,756	6	65.988	0.92305	94.000	92.683	1.317	1.546	1.100	0.44
12864	6	28,694	105886	\$42.00	2	2,105	4	62.122	0.93602	94.000	93.000	1.000	2.146	1.100	1.04
14127	1	18,105	137123B	\$35.32	1	907	3	52.429	0.90624	94.000	92.067	1.933	0.757	1.100	-0.34
12404	4	75,105	TS	\$39.50	1	630	7	50.000	0.78655	94.000	92.000	2.000	0.983	1.100	-0.11
12864	6	28,694	105886A	\$42.00	1	1,917	3	46.462	0.86211	94.000	91.833	2.167	1.301	1.100	0.20
13278	6	12,367	147010	\$38.00	1	1,500	3	39.336	0.80149	94.000	91.733	2.267	0.702	1.100	-0.39
Totals	- G	rading	: S					Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V
		Ton	s: 517,	946		E	3est:	100.000	1.06000			0.014	0.471	1.100	-0.62
		Proces		39		W	orst:	39.336	0.78655			2.267	2.146	1.100	1.04
		Тє	e sts: 1,0		Veigh	ted Aver	age:	93.859	1.03064			0.509	0.847	1.100	-0.25
Gradii	ng: I	SX													
	-	Plan	Mix Design	Price	Proce No		Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	v	StDev - V
Gradin Subacct. 12287	-	Plan							•	TV 94.000	Mean 92.550		St. Dev. 0.058	V	- V
Subacct.	Reg.	Plan Quant. 59,892	Design	\$42.75	No	. Tons		Level	Factor			to TV			- V -1.04
Subacct. 12287	Reg.	Plan Quant. 59,892	Design 147067	\$42.75 \$36.05	No 1	. Tons 1,618	4	100.000	1.03000	94.000	92.550	to TV 1.450	0.058	1.100	-V -1.04 -0.12
12287 13817	Reg. 6 1 3	Plan Quant. 59,892 58,231	147067 1372021 104503	\$42.75 \$36.05	1 1 1	1,618 37,338	4 76	100.000 95.177	1.03000 1.03804	94.000 94.000	92.550 93.683	1.450 0.317	0.058 0.972	1.100 1.100	-1.04 -0.12 -0.06
12287 13817 13534	Reg. 6 1 3	Plan Quant. 59,892 58,231 69,728	Design 147067 1372021 104503 13522	\$42.75 \$36.05 \$30.42	1 1 1 1	1,618 37,338 4,500	4 76 9	100.000 95.177 94.151	1.03000 1.03804 1.04000	94.000 94.000 94.000	92.550 93.683 93.556	1.450 0.317 0.444	0.058 0.972 1.038	1.100 1.100 1.100	-1.04: -0.12: -0.06: 0.006
12287 13817 13534 13522	6 1 3 5	Plan Quant. 59,892 58,231 69,728 110,324	147067 1372021 104503 13522 4503-3	\$42.75 \$36.05 \$30.42 \$31.30	1 1 1 1 1 1 1	1,618 37,338 4,500 07,489	4 76 9 221	100.000 95.177 94.151 92.700	1.03000 1.03804 1.04000 1.00664	94.000 94.000 94.000 94.000	92.550 93.683 93.556 93.851	1.450 0.317 0.444 0.149	0.058 0.972 1.038 1.108	1.100 1.100 1.100 1.100	-1.04/ -0.12/ -0.06/ 0.00/ -0.02/ 0.19/
12287 13817 13534 13522 13534	Reg. 6 1 3 5	Plan Quant. 59,892 58,231 69,728 110,324 69,728	147067 1372021 104503 13522 4503-3	\$42.75 \$36.05 \$30.42 \$31.30 \$30.42 \$35.47	1 1 1 1 1 1 1	1,618 37,338 4,500 07,489 39,374	4 76 9 221 79	100.000 95.177 94.151 92.700 89.905	1.03000 1.03804 1.04000 1.00664 0.99597	94.000 94.000 94.000 94.000 94.000	92.550 93.683 93.556 93.851 93.409	1.450 0.317 0.444 0.149 0.591	0.058 0.972 1.038 1.108 1.072	1.100 1.100 1.100 1.100 1.100	-V -1.04/2 -0.12/2 -0.06/2 0.00/2 -0.02/2
12287 13817 13534 13522 13534 13863	Reg. 6 1 3 5 3	Plan Quant. 59,892 58,231 69,728 110,324 69,728 36,348 59,892	147067 1372021 104503 13522 4503-3 299	\$42.75 \$36.05 \$30.42 \$31.30 \$30.42 \$35.47 \$42.75	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,618 37,338 4,500 07,489 39,374 26,341	4 76 9 221 79 50	100.000 95.177 94.151 92.700 89.905 87.899	1.03000 1.03804 1.04000 1.00664 0.99597 0.98844	94.000 94.000 94.000 94.000 94.000	92.550 93.683 93.556 93.851 93.409 94.140	1.450 0.317 0.444 0.149 0.591 0.140	0.058 0.972 1.038 1.108 1.072 1.292	1.100 1.100 1.100 1.100 1.100 1.100	-V -1.04 -0.12 -0.06 0.00 -0.02 0.19
12287 13817 13534 13522 13534 13863 12287	Reg. 6 1 3 5 3 6 3	Plan Quant. 59,892 58,231 69,728 110,324 69,728 36,348 59,892 69,728	147067 1372021 104503 13522 4503-3 299 147064 04503-2	\$42.75 \$36.05 \$30.42 \$31.30 \$30.42 \$35.47 \$42.75	No 1 1 1 1 1 1 1 1	1,618 37,338 4,500 07,489 39,374 26,341 6,500	4 76 9 221 79 50 13	100.000 95.177 94.151 92.700 89.905 87.899 87.024	1.03000 1.03804 1.04000 1.00664 0.99597 0.98844 1.01020	94.000 94.000 94.000 94.000 94.000 94.000	92.550 93.683 93.556 93.851 93.409 94.140 92.423	1.450 0.317 0.444 0.149 0.591 0.140 1.577 0.685	0.058 0.972 1.038 1.108 1.072 1.292 0.377	1.100 1.100 1.100 1.100 1.100 1.100	- V -1.04 -0.12 -0.06 0.00 -0.02 0.19 -0.72
12287 13817 13534 13522 13534 13863 12287 13534	Reg. 6 1 3 5 3 6 3	Plan Quant. 59,892 58,231 69,728 110,324 69,728 36,348 59,892 69,728	Design 147067 1372021 104503 13522 4503-3 299 147064 04503-2	\$42.75 \$36.05 \$30.42 \$31.30 \$30.42 \$35.47 \$42.75 \$30.20	No 1 1 1 1 1 1 1 1	1,618 37,338 4,500 07,489 39,374 26,341 6,500 6,500	4 76 9 221 79 50 13	100.000 95.177 94.151 92.700 89.905 87.899 87.024 79.504	1.03000 1.03804 1.04000 1.00664 0.99597 0.98844 1.01020 0.96842	94.000 94.000 94.000 94.000 94.000 94.000	92.550 93.683 93.556 93.851 93.409 94.140 92.423	1.450 0.317 0.444 0.149 0.591 0.140 1.577 0.685	0.058 0.972 1.038 1.108 1.072 1.292 0.377 1.439	1.100 1.100 1.100 1.100 1.100 1.100 1.100	- V -1.04 -0.12 -0.06 0.00 -0.02 0.19 -0.72 0.33 StDev
12287 13817 13534 13522 13534 13863 12287 13534	Reg. 6 1 3 5 3 6 3	Plan Quant. 59,892 58,231 69,728 110,324 69,728 36,348 59,892 69,728 Tons Process	Design 147067 1372021 104503 13522 4503-3 299 147064 04503-2 SX ss: 229,0 ses:	\$42.75 \$36.05 \$30.42 \$31.30 \$30.42 \$35.47 \$42.75 \$30.20	No 1 1 1 1 1 1 1 1	1,618 37,338 4,500 07,489 39,374 26,341 6,500 6,500	4 76 9 221 79 50 13	100.000 95.177 94.151 92.700 89.905 87.899 87.024 79.504 Quality Level	1.03000 1.03804 1.04000 1.00664 0.99597 0.98844 1.01020 0.96842 Pay Factor	94.000 94.000 94.000 94.000 94.000 94.000	92.550 93.683 93.556 93.851 93.409 94.140 92.423	1.450 0.317 0.444 0.149 0.591 0.140 1.577 0.685 Mean to TV	0.058 0.972 1.038 1.108 1.072 1.292 0.377 1.439	1.100 1.100 1.100 1.100 1.100 1.100 1.100 V	-V -1.04 -0.12 -0.06 0.00 -0.02 0.19 -0.72 0.33 StDev -V

Mat Density - Totals 1/1/2002 to 12/31/2002.

			Quality Level	Pay Factor	Mean to TV St	. Dev.	v	StDev - V
Tons:	747,606	Best:	100.000	1.06000	0.014	0.058	1.100	-1.042
Processes: Tests:	47 1,513	Worst:	39.336	0.78655	2.267	2.146	1.100	1.046
	.,	Weighted Average:	93.171	1.02358	0.452	0.919	1.100	-0.181

Appendix E

Reports for 2003 Projects

Report 5	Project Listing by Region/Subaccount	E - 1
Report 6	Project Data	E - 2
Report 7	Calculated Pay Factor Composite and I/DP by Region	E - 18
Report 8	Asphalt Content – Process Information	E - 20
Report 9	VMA – Process Information	E - 22
Report 10	Air Voids – Process Information	E - 24
Report 11	Mat Density Process Information	E - 26

Project Listing by Region/Subaccount - Voids Acceptance

Projects with Bid Dates from 1/1/2003 to 12/31/2003.

14200 NH 0243-066 Calhan to Ramah 49 01/30/03 \$1,397,3 14201 NH 0504-044 Chico Creek West 14 03/27/03 \$2,983,5 14202 NH 0504-045 US 50 Through Rocky Ford 32 02/13/03 \$1,497,6 14203 NH 0505-038 Lamar, East 11 02/06/03 \$2,589,0 14205 STU 1151-01 Ft Carson to Lake Ave 49 01/23/03 \$3,352,6 14207 STA 3851-015 Arkansas River to SH 11 02/27/03 \$2,535,3 14210 STA 0831-087 SH 83A from SH 115 to 49 06/05/03 \$2,936,5 Number of Projects 7 Total Quantity 338,483 Region: 3 Subacct. Project Code Location Supplier Bid Date Total Number of Projects 2 Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total Go33 MTCE 06-033 1-76 Federal to Br									
14201 NH 0504-044 Chico Creek West 14 03/27/03 \$2,983,5 14202 NH 0504-045 US 50 Through Rocky Ford 32 02/13/03 \$1,497,6 14203 NH 0505-038 Lamar, East 11 02/06/03 \$2,589,0 14205 STU 1151-01 Ft Carson to Lake Ave 49 01/23/03 \$3,352,6 14207 STA 3851-015 Arkansas River to SH 11 02/27/03 \$2,535,3 14210 STA 0831-087 SH 83A from SH 115 to 49 06/05/03 \$2,936,5 Number of Projects 7 Total Quantity 338,483 Region: 3 Subacct. Project Code Location Supplier Bid Date Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total Quantity 81,260 Region: 6 Supplier Bid Date Total Quantity 81,260 Reg	ŧ	Code	Lo	ocation		Supplier	Bid Date	Total Bid	Plan Q
14202 NH 0504-045 US 50 Through Rocky Ford 32 02/13/03 \$1,497,6 14203 NH 0505-038 Lamar, East 11 02/06/03 \$2,589,0 14205 STU 1151-01 Ft Carson to Lake Ave 49 01/23/03 \$3,352,6 14207 STA 3851-015 Arkansas River to SH 11 02/27/03 \$2,535,3 14210 STA 0831-087 SH 83A from SH 115 to 49 06/05/03 \$2,936,5 Number of Projects 7 Total Quantity 338,483 Region: 3 Subacct. Project Code Location Supplier Bid Date Total Number of Projects 2 Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total 6033 MTCE 06-033 1-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, 1-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, 1-70 to US 6 19	13	-066	Ca	lhan to Ramah		49	01/30/03	\$1,397,351.60	28,6
14203 NH 0505-038 Lamar, East 11 02/06/03 \$2,589,0 14205 STU 1151-01 Ft Carson to Lake Ave 49 01/23/03 \$3,352,6 14207 STA 3851-015 Arkansas River to SH 11 02/27/03 \$2,535,3 14210 STA 0831-087 SH 83A from SH 115 to 49 06/05/03 \$2,936,5 Number of Projects 7 Total Quantity 338,483 Region: 3 Subacct. Project Code Location Supplier Bid Date Total 13865 STR 0401-01 E & W of Maybell 19 03/27/03 \$3,828,483 14218 STA 0701-161 Fruitvale East 16 03/06/03 \$1,463,1 Number of Projects 2 Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total Quantity 6033 MTCE 06-033 I-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25)4	-044	Ch	ico Creek West		14	03/27/03	\$2,983,583.95	66,0
14205 STU 1151-01 Ft Carson to Lake Ave 49 01/23/03 \$3,352,6 14207 STA 3851-015 Arkansas River to SH 11 02/27/03 \$2,535,3 14210 STA 0831-087 SH 83A from SH 115 to 49 06/05/03 \$2,936,5 Number of Projects 7 Total Quantity 338,483 Region: 3 Subacct. Project Code Location Supplier Bid Date Total 13865 STR 0401-01 E & W of Maybell 19 03/27/03 \$3,828,4 14218 STA 0701-161 Fruitvale East 16 03/06/03 \$1,463,1 Number of Projects 2 Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total 6033 MTCE 06-033 1-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40,)4	-045	US	5 50 Through Rock	ky Ford	32	02/13/03	\$1,497,631.00	30,7
14207 STA 3851-015 Arkansas River to SH 11 02/27/03 \$2,535,3 Number of Projects SH 83A from SH 115 to 49 06/05/03 \$2,936,5 Number of Projects 7 Total Quantity 338,483 Region: 3 Subacct. Project Code Location Supplier Bid Date Total 13865 STR 0401-01 E & W of Maybell 19 03/27/03 \$3,828,4 14218 STA 0701-161 Fruitvale East 16 03/06/03 \$1,463,1 Number of Projects 2 Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total 6033 MTCE 06-033 1-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 Univers)5	-038	La	mar, East		11	02/06/03	\$2,589,065.91	40,6
Number of Projects 7 Total Quantity 338,483	5	1-01	Ft	Carson to Lake Av	/e	49	01/23/03	\$3,352,657.06	67,2
Number of Projects 7 Total Quantity 338,483 Region: 3 Subacct. Project Code Location Supplier Bid Date Total T	5	1-015	Ar	kansas River to Sl	1	11	02/27/03	\$2,535,390.57	68,3
Region: 3 Subacct. Project Code Location Supplier Bid Date Total 13865 STR 0401-01 E & W of Maybell 19 03/27/03 \$3,828,4 14218 STA 0701-161 Fruitvale East 16 03/06/03 \$1,463,1 Number of Projects 2 Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total 6033 MTCE 06-033 I-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,859,3 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3	3	1-087	SH	83A from SH 115	5 to	49	06/05/03	\$2,936,599.90	36,9
Subacct. Project Code Location Supplier Bid Date Total 13865 STR 0401-01 E & W of Maybell 19 03/27/03 \$3,828,4 14218 STA 0701-161 Fruitvale East 16 03/06/03 \$1,463,1 Number of Projects 2 Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total Odd Date 6033 MTCE 06-033 I-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3	۳ (of Pro	ject	s 7		Total Qu	antity 338	,483	
13865 STR 0401-01 E & W of Maybell 19 03/27/03 \$3,828,4 14218 STA 0701-161 Fruitvale East 16 03/06/03 \$1,463,1 **Number of Projects 2 Total Quantity 81,260** **Region: 6** Subacct. Project Code Location Supplier Bid Date Total 6033 MTCE 06-033 I-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3							····		
14218 STA 0701-161 Fruitvale East 16 03/06/03 \$1,463,1 Number of Projects 2 Total Quantity 81,260 Region: 6 Subacct. Project Code Location Supplier Bid Date Total 6033 MTCE 06-033 I-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3	t	Code	Lo	ecation		Supplier	Bid Date	Total Bid	Plan Qu
Subacct. Project Code Location Supplier Bid Date Total 6033 MTCE 06-033 I-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3	0	1-01	Εł	& W of Maybell		19	03/27/03	\$3,828,402.85	62,6
Region: 6 Subacct. Project Code Location Supplier Bid Date Total 6033 MTCE 06-033 I-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3	0	1-161	Fru	uitvale East		16	03/06/03	\$1,463,199.55	18,6
Subacct. Project Code Location Supplier Bid Date Total 6033 MTCE 06-033 I-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3	. (of Pro	jects	s 2		Total Qu	antity 81,2	260	
6033 MTCE 06-033 I-76 Federal to Br 33 08/21/03 \$517,0 11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3					-				
11210 STA 072A-02 SH 72, I-70 to Gar 13 01/30/03 \$1,645,6 12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3	t	Code	Lo	cation		Supplier	Bid Date	Total Bid	Plan Qu
12021 NH 0404-032 US 40, I-70 to US 6 19 01/09/03 \$1,657,6 13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3)6	i-033	1-7	6 Federal to Br		33	08/21/03	\$517,079.95	11,0
13348 STA 0881-012 SH 88 University to I-25 10 01/16/03 \$1,344,2 14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3	2	A-02	SH	72, I-70 to Gar		13	01/30/03	\$1,645,634.68	20,2
14235 STA 4701-104 C-470 Ken Caryl to Wadswort 10 02/06/03 \$1,859,3	4	-032	US	40, I-70 to US 6		19	01/09/03	\$1,657,695.05	23,3
,	8	1-012	SH	88 University to I-	-25	10	01/16/03	\$1,344,295.43	17,2
14244 STA 0361-072 US 36 Wads to Lowe 33 05/22/03 \$3.148.6	0	1-104	C-4	170 Ken Caryl to V	Vadswor	t 10	02/06/03	\$1,859,303.18	25,6
	6	1-072	US	36 Wads to Lowe	:	33	05/22/03	\$3,148,630.10	52,40

Totals: Projects with Bid Dates from 1/1/2003 to 12/31/2003.

Number of Projects 15

Total Plan Quantity 569,645

Subacco	ount: 6	033	MTC	E 06-033	1	I-76 Fe	deral to B	r		Regi	on: 6	Si	upplier:	33
Mix Desi	gn No	147010	0-1	Process N	o 1	Gi	rading S	0	PG	P	rice Per	Ton \$32.2	25	,,,
	Tests	Tons	Quality Level	Pay Factor		I/DP	TV	Mear	Mean to TV	St Dev	r. V	St Dev.	01	her
AC	11	10,804	91.870	1.03495	9	1,217.91	5.100	5.121	0.021	0.180	0.200	-0.020	CTS	500
Density	24	10,304	94.694	1.04428	9	55,149.78	94.000	94.167	7 0.167	1.052	1.100	-0.048	Tons I/DP	
VMA	. 11	10,804	97.404	1.04500	\$	1,567.93	3 14.200	13.873	3 0.327	0.484	0.600	-0.116	PF 1.0	\$197.53 `
Air Voids	11	10,804	89.953	1.02678	9	2,799.54	3.000	2.618	3 0.382	0.646	0.600	0.046	Tons	, o
				I/DP:	\$	10,932.69	9					2\	/ Adj.	\$0.00
Joint De	ensity					_								
Grad. P	rice	Proc.	Tests To		ality evel	Pay Factor	· 1/D	Þ	TV	Mean	Mean to TV	Std Dev	v	St Dev.
	32.25	1			.982	0.86802				88.880	3.120	2.247	1.600	0.647
Totals	s: 6033	}		Tests	Ton	s	I/DP							
1 Olai.	3. 0055		AC	11	10,8	04	\$1,21	7.91	СТ	S I/DP				
			Density	24	10,8	04	\$5,14	9.78	\$1	197.53				
			VMA	11	10,8	04	\$1,56	7.93	2\	/ Adj				
			Air Voids	11	10,8		\$2,79			\$0.00				
		Joi	nt Density	13	10,8	04	(\$6,89	7.84)						
			Pla	n Quant	11,0	55	Project I	DP	\$4,034.8	35	CPFC	1.01158		
	Comme	nts:					a.							
Subacco	unt: 1	1210	STA (072A-026	\$	SH 72, 1	1-70 to Ga	r		Regio	on: 6	Sı	ıpplier:	13
Mix Desig	gn No	147014	ļ	Process N	o 1	Gr	ading S	()	PG	Pi	rice Per	Ton \$31.5	50	
	Tests	Tons	Quality Level	Pay Factor		I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
AC	21	21,000	96.996	1.05000	\$	3,307.50	5.100	5.200	0.100	0.110	0.200	-0.090	CTS	•
Density		21,000		1.05500		2,733.87					1.100		Tons	0
VMA		21,000		1.05000		3,307.50		14.210			0.600	-0.035	I/DP	\$0.00
Air Voids	21	21,000		1.03599		7,142.36		2.900			0.600	0.072	PF 1.0 Tons	0
		21,000					_	2.500	0.100	0.012	0.000		' Adi.	\$0.00
				I/DP:	\$2	26,491.23	3					20	Auj.	φυ.υυ
	s: 1121	0		Tests	Tons		I/DP						<u> </u>	
_ 0	··	-	AC	21	21,0	00	\$3,30	7.50	СТ	S I/DP				
			Density	42	21,0	00	\$12,73	3.87		\$0.00				
			VMA	21	21,0	00	\$3,30	7.50	2 V	/ Adj				
			Air Voids	21	21,0	00	\$7,14	2.36		\$0.00				
		Joir	nt Density			_								
			Pla	n Quant	20,2	58	Project I/	DP \$	26,491.2	3	CPFC	1.04005		

Comments: Joint density waived per project engr.

	ount: 12	2021	NH 04	404-032	US 40, I-	70 to US	6		Regio	n: 6	Si	ıpplier:	19
Mix Desi	gn No	147004		Process No	o 1 Gra	ding S	()	PG	Pr	ice Per	Ton \$40.5	60	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Oti	her
AC		20,000	86.499	0.99756	(\$197.60)	5.200	5.187	0.013	0.204	0.200	0.004	CTS Tons	C
Density		20,000	92.057	1.02163	\$6,131.74		93.600	0.400	1.082	1.100	-0.018	I/DP	\$0.00
VMA		20,000	98.016	1.05000	\$4,050.00		13.785	0.215	0.498	0.600	-0.102	PF 1.0	
Air Voids	24	20,000	96.007	1.05000	\$12,150.00	3.000	3.235	0.235	0.558	0.600	-0.042	Tons	00.00
				I/DP:	\$22,134.14	···					2V	Adj.	\$0.00
Joint De	ensity	Proc.		Ou	ality Pay					Mean			St Dev.
Grad. P	rice		ests To		vel Factor	I/DF	•	TV	Mean	to TV	Std Dev	V	- V
S \$4	40.50	1	12 20,0	000 85.	.672 1.00503	\$1,833	3.01 9	2.000	91.270	0.730	2.709	1.600	1.109
Totals	s: 1202) [Tests	Tons	I/DP							
101111	, 1202	,1	AC	24	20,000	(\$197	7.60)	СТ	S I/DP				
			Density	48	20,000	\$6,13			\$0.00				
			VMA	24	20,000	\$4,050	0.00	2V	' Adj				
			Air Voids	24	20,000	\$12,150			\$0.00				
		Joint	t Density	12	20,000	\$1,833	3.01						
			Plan	Quant	23,310 P	roject I/I	DP \$	23,967.1	5	CPFC	1.02959		
	Comme	nts: Adj			23,310 P tity made. Rep	•	,		5	CPFC	1.02959		
Subacco			ustment to		,	oorted qu	ant. 60		5 Regio			pplier:	10
	unt: 13	3348	ustment to	JD quan	sH 88 Un	oorted qu	ant. 60		Regio	n: 6		-	10
Subacco	unt: 13	3348	ustment to	JD quan	sH 88 Un	oorted qu	ant. 60	000.	Regio	n: 6 ice Per 1	<i>Su Fon</i> \$36.5 St Dev.	-	
Subacco Mix Desig	unt: 13 gn No Tests	3 <i>348</i> 1470031 Tons	STA 0 Guality Level	9881-012 Process No Pay Factor	SH 88 Un o 1 Grad	iversity to	ant. 60	000. PG Mean to TV	Regio Pri St Dev.	n: 6 ice Per 1	Su Fon \$36.5 St Dev.	0	ier
Subacco Mix Desig	unt: 13 gn No Tests	3348 1470031 Tons 16,161	STA 0 Quality Level 95.386	9881-012 Process No Pay Factor 1.04831	SH 88 Un 5 1 Grac 1/DP \$2,849.70	iversity to	ant. 60 o I-25 () Mean 5.494	OOO. G Mean to TV 0.094	Regio Pri St Dev. 0.126	n: 6 V 0.200	Su Fon \$36.5 St Dev. - V	Oth	ner 0
Subacco Mix Desig AC Density	unt: 13 gn No Tests 17 33	3348 1470031 Tons 16,161 16,161	STA 0 R Quality Level 95.386 100.000	9881-012 Process No. Pay Factor 1.04831 1.05500	SH 88 Un o 1 Grac I/DP \$2,849.70 \$12,977.28	iversity to	ant. 60 o I-25 () Mean 5.494 94.300	PG Mean to TV 0.094 0.300	Regio Pri St Dev. 0.126 0.439	n: 6 V 0.200 1.100	Su Ton \$36.5 St Dev V -0.074 -0.661	Oth CTS Tons	ner 0
Subacco Mix Desig AC Density VMA	unt: 13 gn No Tests 17 33 17	3348 1470031 Tons 16,161 16,161 16,161	STA 0 Quality Level 95.386 100.000 96.494	9881-012 Process No. Pay Factor 1.04831 1.05500 1.05000	SH 88 Un The state of the stat	iversity to ding S TV 5.400 94.000 16.400	ant. 60 To I-25 () Hean 5.494 94.300 16.206	Mean to TV 0.094 0.300 0.194	Regio Pri St Dev. 0.126 0.439 0.565	v 0.200 1.100 0.600	Su Fon \$36.5 St Dev. - V -0.074 -0.661 -0.035	Oth CTS Tons I/DP PF 1.0	n er 0 \$0.00
Subacco Mix Desig AC Density	unt: 13 gn No Tests 17 33	3348 1470031 Tons 16,161 16,161	STA 0 R Quality Level 95.386 100.000	9881-012 Process No. Pay Factor 1.04831 1.05500	SH 88 Un o 1 Grac I/DP \$2,849.70 \$12,977.28	iversity to	ant. 60 o I-25 () Mean 5.494 94.300	PG Mean to TV 0.094 0.300	Regio Pri St Dev. 0.126 0.439	n: 6 V 0.200 1.100	Su Fon \$36.5 St Dev. - V -0.074 -0.661 -0.035 -0.068	Oth CTS Tons I/DP	ner 0
Subacco Mix Design AC Density VMA	unt: 13 gn No Tests 17 33 17	3348 1470031 Tons 16,161 16,161 16,161	STA 0 Quality Level 95.386 100.000 96.494	9881-012 Process No. Pay Factor 1.04831 1.05500 1.05000 1.00496	SH 88 Un 5 1 Grac 1/DP \$2,849.70 \$12,977.28 \$2,949.38 \$1,169.54	iversity to ding S TV 5.400 94.000 16.400	ant. 60 To I-25 () Hean 5.494 94.300 16.206	Mean to TV 0.094 0.300 0.194	Regio Pri St Dev. 0.126 0.439 0.565	v 0.200 1.100 0.600	Su Fon \$36.5 St Dev. - V -0.074 -0.661 -0.035 -0.068	Oth CTS Tons I/DP PF 1.0 Tons	ner 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	unt: 13 gn No Tests 17 33 17	3348 1470031 Tons 16,161 16,161 16,161 16,161	STA 0 Quality Level 95.386 100.000 96.494 87.134	Process No. Pay Factor 1.04831 1.05500 1.05000 1.00496 I/DP:	SH 88 Un 5 1 Grac 1/DP \$2,849.70 \$12,977.28 \$2,949.38 \$1,169.54	iversity to ding S TV 5.400 94.000 16.400	ant. 60 To I-25 () Hean 5.494 94.300 16.206	Mean to TV 0.094 0.300 0.194	Regio Pri St Dev. 0.126 0.439 0.565	v 0.200 1.100 0.600	Su Fon \$36.5 St Dev. - V -0.074 -0.661 -0.035 -0.068	Oth CTS Tons I/DP PF 1.0 Tons	ner 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	gn No Tests 17 33 17	3348 1470031 Tons 16,161 16,161 16,161 16,161	STA 0 P Quality Level 95.386 100.000 96.494 87.134	Process No. Pay Factor 1.04831 1.05500 1.05000 1.00496 I/DP:	SH 88 Un SH 88 Un 1 Grac 1/DP \$2,849.70 \$12,977.28 \$2,949.38 \$1,169.54 \$19,945.90 Tons 16,161	iversity to ding S (V 5.400 94.000 16.400 3.000	ant. 60 60 I-25 () F Mean 5.494 94.300 16.206 3.600	Mean to TV 0.094 0.300 0.194 0.600	Regio Pri St Dev. 0.126 0.439 0.565 0.532	v 0.200 1.100 0.600	Su Fon \$36.5 St Dev. - V -0.074 -0.661 -0.035 -0.068	Oth CTS Tons I/DP PF 1.0 Tons	ner 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	gn No Tests 17 33 17	3348 1470031 Tons 16,161 16,161 16,161 16,161	STA 0 P Quality Level 95.386 100.000 96.494 87.134 AC Density	Process No. Pay Factor 1.04831 1.05500 1.05000 1.00496 I/DP: Tests 17 33	SH 88 Un SH 88 Un 1 Grac I/DP \$2,849.70 \$12,977.28 \$2,949.38 \$1,169.54 \$19,945.90 Tons 16,161 16,161	iversity to ding S TV 5.400 94.000 16.400 3.000 I/DP \$2,849 \$12,977	mant. 60 To I-25 () Mean 5.494 94.300 16.206 3.600	Mean to TV 0.094 0.300 0.194 0.600	Regio Pri St Dev. 0.126 0.439 0.565 0.532	v 0.200 1.100 0.600	Su Fon \$36.5 St Dev. - V -0.074 -0.661 -0.035 -0.068	Oth CTS Tons I/DP PF 1.0 Tons	ner 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	gn No Tests 17 33 17	3348 1470031 Tons 16,161 16,161 16,161	STA 0 Quality Level 95.386 100.000 96.494 87.134 AC Density VMA	Process No. Pay Factor 1.04831 1.05500 1.05000 1.00496 I/DP: Tests 17 33 17	SH 88 Un SH 88 Un 1 Grace 1/DP \$2,849.70 \$12,977.28 \$2,949.38 \$1,169.54 \$19,945.90 Tons 16,161 16,161 16,161	iversity to 10 10 10 10 10 10 10 10 10 10 10 10 10	ant. 60 60 I-25 () F Mean 5.494 94.300 16.206 3.600 0.70 7.28 9.38	O00. PG Mean to TV 0.094 0.300 0.194 0.600	Regio Pri St Dev. 0.126 0.439 0.565 0.532	v 0.200 1.100 0.600	Su Fon \$36.5 St Dev. - V -0.074 -0.661 -0.035 -0.068	Oth CTS Tons I/DP PF 1.0 Tons	ner 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	gn No Tests 17 33 17	3348 1470031 Tons 16,161 16,161 16,161	STA 0 Quality Level 95.386 100.000 96.494 87.134 AC Density VMA	Process No. Pay Factor 1.04831 1.05500 1.05000 1.00496 I/DP: Tests 17 33	SH 88 Un SH 88 Un 1 Grac I/DP \$2,849.70 \$12,977.28 \$2,949.38 \$1,169.54 \$19,945.90 Tons 16,161 16,161	iversity to ding S TV 5.400 94.000 16.400 3.000 I/DP \$2,849 \$12,977	ant. 60 60 I-25 () F Mean 5.494 94.300 16.206 3.600 0.70 7.28 9.38	O00. PG Mean to TV 0.094 0.300 0.194 0.600	Regio Pri St Dev. 0.126 0.439 0.565 0.532	v 0.200 1.100 0.600	Su Fon \$36.5 St Dev. - V -0.074 -0.661 -0.035 -0.068	Oth CTS Tons I/DP PF 1.0 Tons	ner 0 \$0.00
Subacco Mix Desig AC Density VMA Air Voids	gn No Tests 17 33 17	3348 1470031 Tons 16,161 16,161 16,161	STA 0 Quality Level 95.386 100.000 96.494 87.134 AC Density VMA Air Voids	Process No. Pay Factor 1.04831 1.05500 1.05000 1.00496 I/DP: Tests 17 33 17	### SH 88 Un SH 88 Un 1	iversity to 10 10 10 10 10 10 10 10 10 10 10 10 10	ant. 60 (o I-25 () F Mean 5.494 94.300 16.206 3.600 0.70 7.28 9.38 9.54	O00. PG Mean to TV 0.094 0.300 0.194 0.600	Regio Pri St Dev. 0.126 0.439 0.565 0.532 8 I/DP \$0.00 Adj \$0.00	v 0.200 1.100 0.600	Su Fon \$36.5 St Dev. - V -0.074 -0.661 -0.035 -0.068	Oth CTS Tons I/DP PF 1.0 Tons	ner C \$0.00

Subacco	unt: 13	3865	STR 0	401-018	E & W 0	f Maybel	7		Regio	on: 3	S	upplier:	19
Mix Desig	n No	76103B	1	Process No	o 1 Gra	ading SX	()	PG	Pi	rice Per	Ton \$36.	30	***************************************
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
AC	51	51,264	88.684	0.99393	(\$1,129.27)	5.600	5.595	5 0.005	0.191	0.200	-0.009	CTS	500
Density	102	50,764	91.604	1.00790	\$5,096.94	94.000	93.542	2 0.458	1.069	1.100	-0.031	Tons I/DP	\$86.1
VMA	25	25,000	70.215	0.87350	(\$11,479.94)	14.400	13.528	0.872	0.613	0.600	0.013	PF 1.0	
Air Voids	25	25,000	84.268	0.97800	(\$5,989.01)	3.500	3.072	0.428	0.736	0.600	0.136	Tons	(
				I/DP:	(\$13,415.13)					2\	/ Adj.	\$0.00
Mix Desig	ın No	76103B	- 1	Process No	o 2 Gra	ding SX	()	PG	Pi	ice Per	Ton \$36.	30	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
AC				. 45.5.	\$0.00				••	0.200		CTS	_
Density		0			\$0.00	94.000				1.100		Tons	(
VMA	26	26,264	97.585	1.05500	\$5,243.81	14.400	14.431	1 0.031	0.554			I/DP	\$0.0
Air Voids	26	26,264	74.293	0.90385	(\$27,500.47)		3,731		1.036			PF 1.0 Tons	C
		20,20	14.200	I/DP:	(\$22,256.66)	_	0.70	. 0.201	1.000	0.000		/ Adj.	\$0.00
———— Mix Desig	ın No	78103	ı	Process No	o 1 Gra	nding SX	0	PG	Pı	ice Per	Ton \$36.3	33	
	Tests	Tono	Quality	Pay	I/DP	TV	Moon	Mean	St Day	v	St Dev.	Ot	her
AC		Tons	Level	Factor			Mean		St Dev		- V	CTS	
Density	9	9,000 8,500	68.104 97.900	0.90880 1.05000	(\$2,982.27) \$5,404.66		5.613 93.772		0.288 0.892	0.200 1.100	0.088 -0.208	Tons	500
VMA	18 9	9,000	99.922	1.03000	\$1,308.02	14.400			0.283	0.600		I/DP	\$222.5
Air Voids	9	•					3.033		0.263			PF 1.0	,
All Voids	9	9,000	81.166	0.98829 I/DP:	(\$1,149.15) \$2,803.80	- 3.500	3.033	0.467	0.798	0.600	0.198 2\	Tons / Adj.	\$0.00
				1/DF.	φ2,603.60							, Auj.	
Joint De	nsity _i	Proc.		Qua	ality Pay					Mean			St Dev.
Grad. Pı	ice	No Tes	sts To		vel Factor	I/D	P	TV	Mean	to TV	Std Dev	V	- V
SX \$3	7.38	1 :	22 60,2	264 99.	133 1.05000	\$16,89	5.01	92.000	91.890	0.110	1.633	1.600	0.033
Totals	• 1386	5		Tests	Tons	I/DP							
1011119	. 1500		AC	60	60,264	(\$4,11	1.54)	СТ	S I/DP				
			Density	120	60,264	\$10,50		\$3	08.69				
			VMA	60	60,264	(\$4,92			' Adj				
			ir Voids	60	60,264	(\$34,63			\$0.00				
		Joint	Density	22	60,264	\$16,89							
			Plan	Quant	62,608	Project I/	DP (\$15,972.9	8)	CPFC	0.99270		

Comments:

Subacco	unt: 14	1200	NH 02	243-066	Calhan	to Ramah			Regio	n: 2	Si	upplier:	49
Mix Desig	gn No	236	,	Process N	o 1 Gr	ading SX ()	ı	PG	Pr	ice Per	Ton \$32.4	41	•
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV N	/lean	Mean to TV	St Dev	. v	St Dev. - V	Oti	her
AC	27	27,000	80.816	0.95161	(\$4,234.07) 6.500 6	5.438	0.062	0.223	0.200	0.023	CTS Tons	. 0
Density	54	27,000	95.771	1.04500	\$13,781.58	94.000 93	3.415	0.585	0.825	1.100	-0.275	I/DP	\$0.00
VMA	27	27,000	71.178	0.87796	(\$10,678.94) 16.800 15	5.767	1.033	0.296	0.600	-0.304	PF 1.0	Ψ0.00
Air Voids	27	27,000	89.665	1.01220	\$3,203.31	3.000 2	2.211	0.789	0.327	0.600	-0.273	Tons	0
				I/DP:	\$2,071.88	-					2 V	/ Adj.	\$0.00
<i>Joint De</i> Grad. P	<i>nsity</i> rice	Proc. No T	ests To		ality Pay evel Factor	I/DP		TV	Mean	Mean to TV	Std Dev	v	St Dev. - V
SX \$3	2.41	1	18 23,6	804 89	.075 1.01484	\$1,703.36	6 9	2.000	90.150	1.850	1.759	1.600	0.159
Totals	: 1420	00		Tests	Tons	I/DP							
			AC	27	27,000	(\$4,234.0	7)	СТ	I/DP				
			Density	54	27,000	\$13,781.5	8	;	\$0.00				
			VMA	27	27,000	(\$10,678.9	4)	2V	Adj				
			Air Voids	27	27,000	\$3,203.3		;	\$0.00				
		Join	t Density	18	23,604	\$1,703.3	6						
			Plan	Quant	28,607	Project I/DP	•	\$3,775.2	4	CPFC	1.00431		

Comments: Final quantities not equal.

Subacco	unt: 1	4201		NH 0.	504-04	4	Chico Cr	eek Wesi	t		Regi	on: 2	S	upplier:	14
Mix Desig	gn No	1420	1B		Process	No 1	Gra	ding S	0	PG	P	rice Per	Ton \$30.0	00	
	Tests	Ton		uality Level	Pay Facto		I/DP	τv	Mear	Mean to TV		/. V	St Dev. - V	O	ther
AC	33	32,7		94.356	1.039		\$3,875.51	5.300	5.233			0.200		CTS	500
Density	65	32,2	35 9	95.389	1.040	67 \$	13,766.76	94.000	93.648	0.352	2 0.951	1.100	-0.149	Tons I/DP	2,437.49
VMA	33	32,7	35 9	99.998	1.055	00	\$5,401.27	13.600	13.600	0.000	0.318	0.600	-0.282	PF 1.0	•
Air Voids	33	32,7	35 9	90.770	1.016	02	\$4,721.15	3.400	2.936	0.464	4 0.557	0.600	-0.043	Tons	
					I/DP	: \$	25,327.20	•					2\	√ Adj.	\$0.00
Mix Desig	gn No	1420	1T		Process	No 1	Gra	ding S	()	PG	P	rice Per	Ton \$33.1	70	
	Tests	Ton		uality Level	Pay Facto		I/DP	TV	Mear	Mean to TV	_	r. V	St Dev. - V	<u>O</u>	ther
AC	45	44,06	52 9	0.614	1.010	06	\$1,493.07	5.200	5.120	0.080	0.162	0.200	-0.038	CTS	500
Density	87	43,06	52 9	1.140	1.005	26	\$2,669.84	94.000	93.395	0.60	5 1.015	1.100	-0.085	Tons I/DP	\$206.41
VMA	45	44,06	32 9	6.823	1.053	32	\$7,917.91	13.500	13.951	0.45	0.409	0.600	-0.191	PF 1.0	
Air Voids	45	44,06	32 9	95.516	1.044	41 \$	19,783.94	3.500	3.553	0.053	0.606	0.600	0.006	Tons	0
					I/DP	: \$	32,071.17	-					2\	/ Adj.	\$0.00
Mix Desig	n No	1420 ⁻	ΙŦ		Process	No 2	Gra	ding S	()	PG	P	rice Per	Ton \$33.7	70	,
	Tests	Ton		uality Level	Pay Facto		I/DP	TV	Mear	Mean to TV		, V	St Dev. - V	01	her
AC							\$0.00					0.200		CTS	0
Density	1	50	00		0.170	00 (\$5,361.36)	94.000				1.100		Tons I/DP	\$0.00
VMA							\$0.00					0.600		PF 1.0	•
Air Voids							\$0.00					0.600		Tons	0
					I/DP	: ((\$5,361.36)	-					2\	/ Adj.	\$0.00
Joint De	nsity														
	rice	Proc. No	Tests	То		Quality Level	Pay Factor	i/D	P	TV	Mean	Mean to TV	Std Dev	٧	St Dev.
	0.00	1	19			99.619	1.05000	\$7,36		92.000	90.540	1.460	1.038	1.600	-0.562
•	3.70	2	19			89.554	1.01664								
	3.70		19	44,0	002	09.554	1.01004	\$3,70	5.05	92.000	89.690	2.310	1.355	1.600	-0.245
Totals	: 1420	1			Tests	To		I/DP							
			Da	AC	78 453	76,		\$5,36			S I/DP				
				nsity VMA	153 78	76, 76,		\$11,07 \$13,31			231.08) V Adj				
			Air V		78	76, 76,		\$13,31 \$24,50		2	\$0.00				
		Jo	int De		38	76,		\$11,07			ψ0.00				
				Plan			_	•							

Comments: One test 2 x V out.

Subacco	ount: 1	4202	NH 0	504-045	US 50	Through F	Rocky F	ord	Regio	on: 2	S	upplier:	32
Mix Desi	gn No	14202		Process I	lo 1 G	Grading S	()	PG	Pi	ice Per	Ton \$32.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
AC Density		13,455 13,455		1.04500	• •		5.587 94.015		0.140 1.259	0.200 1.100		CTS Tons	0
VMA Air Voids		13,455 13,455	99.597	1.04500 1.04113	\$1,937.5	14.900	14.693 3.400			0.600 0.600	-0.177	I/DP PF 1.0 Tons	\$0.00 0
				I/DP:	\$10,705.8	33					2\	/ Adj.	\$0.00
Mix Desi	gn No	142027	Г	Process N	lo 1 G	irading S	()	PG	Pr	ice Per	Ton \$36.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev.	Otl	her
AC Density		16,961 16,961		0.98158 1.04573	. ,	•	5.464 94.556		0.169 0.866	0.200 1.100	-0.031 -0.234	CTS Tons	0
VMA	17	16,961	87.783	1.00864	\$527.4	9 14.900	14.194	0.706	0.426	0.600	-0.174	I/DP PF 1.0	\$0.00
Air Voids	17	16,961	92.460	1.03381 I/DP:	\$6,193.0 \$15,368.0		3.141	0.359	0.592	0.600		Tons / Adj.	0 \$0.00
Joint Do	ensity Price	Proc. No T	ests To		uality Pay evel Facto		D	TV	Mean	Mean to TV	Std Dev	v	St Dev.
	32.00	1			6.776 1.0300				94.180	2.180	1.641	1.600	0.041
s \$	36.00	2	7 16,	161 97	7.611 1.0350	0 \$3,05	4.43	92.000	91.130	0.870	1.817	1.600	0.217
Total	s: 1420	2		Tests	Tons	I/DP							
			AC Density	31 61	30,416 30,416	\$81 \$11,29	3.04 0.41		\$ I/DP \$0.00				
			VMA	31	30,416	\$2,46			' Adj				
			Air Voids	31	30,416	\$11,50	5.43		\$0.00				
		Joir	nt Density	12	29,276	\$4,94	2.99						
			Plar	Quant	30,733	Project I	DP \$	31,016.8	8	CPFC	1.02979		

Comments: Joint density quantities

Subaccount: 14203				NH 0505-038			Lamar, East				Region: 2		Supplier: 11		
Mix Desi	244		Process No 1		s N o 1	Grading S		()	PG	PI	Price Per Ton \$3		43		
	Tests	Tor		Quality Level	Pay Fact		I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev. - V	0	ther
AC Density		21,5 21,5		99.231 93.560	1.050 1.031		\$3,278.07 \$7,135.28		5.256 93.208		0.107 0.799	0.200 1.100		CTS Tons	0
VMA Air Voids		21,5 21,5	98.776		1.050 1.027		\$3,278.07 \$5,374.54	7 14.100	13.482	0.618	0.272	0.600 0.600	-0.328	I/DP PF 1.0 Tons	\$0.00 0
					I/DP): <u> </u>	\$19,065.96	- 5					2\	√ Adj.	\$0.00
Mix Desi	gn No	249		Process No		No 1	Gi	rading S	()	PG	Price Per		Ton \$34.	15	
	Tests	Tor		Quality Level	Pay Fact		I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev.	Ot	her
AC Density		20,1 20,1	24	96.794 85.268	1.050 0.972		\$3,436.17 (\$6,565.19	94.000	4.999 92.812	0.001 2 1.188	0.147 0.775	0.200 1.100		CTS Tons I/DP	0 \$0.00
VMA Air Voids		20,124 20,124		93.594 96.100	1.038 1.050		\$2,656.98 \$10,308.52		13.410 3.186		0.461 0.563	0.600 0.600	-0.139 -0.037	PF 1.0 Tons	0
					I/DP	:	\$9,836.48	3					2\	/ Adj.	\$0.00
<i>Joint De</i> Grad. P	ensity rice	Proc. No	Test	s To	ons	Quality Level	Pay Factor	· I/D	P	ΤV	Mean	Mean to TV	Std Dev	٧	St Dev. - V
S \$3	\$30.43		10	21,	545	96.612	1.04500	\$4,42	5.40	92.000	90.670	1.330	1.568	1.600	-0.032
S \$3	34.15	2	10	20,	124	97.379	1.04500	\$4,63	3.83	92.000	90.970	1.030	1.665	1.600	0.065
Totals: 14203		3		AC	Tests 43	To	ns 669	I/DP	4.24	CT	e won				
				ensity	45 85	•	669	\$6,714.24 \$570.09		CTS I/DP \$0.00					
				VMA	43		669	\$5,93			' Adj				
	Air Voids			43	41,	669	\$15,68	3.06		\$0.00					
	Joint Density		20 41		669	\$9,064.23									
				Plar	Quant	t 40.	616	Project I/	DP S	37,966.6	7	CPFC	1.02827		

Comments:

Subacco	unt: 1	4205	STU 1	151-016	Ft Carson	to Lake	e Ave		Regio	on: 2	S	upplier:	49
Mix Desig	gn No	237	ı	Process No	1 Grad	ding S	()	PG	Pi	rice Per	Ton \$32.	13	················
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Otl	ner
AC	31	30,659	81.562	0.95315	(\$4,614.98)	5.400	5.526	0.126	0.186	0.200	-0.014	CTS	C
Density	62	30,659	96.673	1.05070	\$17,481.22	94.000	93.710	0.290	0.907	1.100	-0.193	Tons I/DP	\$0.00
VMA	31	30,659	98.595	1.05500	\$5,417.91	14.400	13.813	0.587	0.288	0.600	-0.312	PF 1.0	φυ.υι
Air Voids	31	30,659	97.485	1.05500	\$16,253.72	3.000	2.671	0.329	0.455	0.600	-0.145	Tons	C
				I/DP:	\$34,537.87						2\	/ Adj.	\$0.00
Mix Desig	gn No	239	,	Process No	1 Grad	ding S	()	PG	Pi	ice Per	Ton \$27.2	26	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Oth	ner
AC	18	18,000	83.755	0.98318	(\$825.21)	5.400	5.486	0.086	0.200	0.200	0.000	CTS	0
Density	38	19,000	95.216	1.04340	\$7,867.86	94.000	94.382	0.382	0.956	1.100	-0.144	Tons I/DP	\$0.00
VMA	19	19,000	82.258	0.97169	(\$1,466.05)	14.000	13.100	0.900	0.323	0.600	-0.277	PF 1.0	Ψ0.00
Air Voids	19	19,000	64.211	0.83715	(\$25,303.34)	3.000	1.989	1.011	0.513	0.600	-0.087	Tons	C
				I/DP:	(\$19,726.74)						2\	/ Adj.	\$0.00
Mix Desig	gn No	239	ı	Process No	2 Grad	ling S	()	PG	Pr	ice Per	Ton \$27.2	26	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Oth	ner
AC	1	1,000		0.47500	(\$1,431.15)					0.200		стѕ	^
Density		0			\$0.00	94.000				1.100		Tons I/DP	0
VMA					\$0.00					0.600		PF 1.0	\$0.00
Air Voids					\$0.00					0.600		Tons	0
				I/DP:	(\$1,431.15)						2\	/ Adj.	\$0.00
Mix Desig	n No	240	F	Process No	1 Grad	ling S	() I	PG	Pr	ice Per î	Ton \$27.2	26	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Oth	er
AC	6	5,750	64.737	0.91494	(\$1,333.35)	5.600	5.362	0.238	0.152	0.200	-0.048	CTS	•
Density	12	5,750	96.926	1.04500	\$2,468.73	94.000	93.317	0.683	0.748	1.100		Tons	0
VMA	6	5,750	76.678	0.98347	(\$259.04)	14.400	13.333	1.067	0.175	0.600	-0.425	I/DP PF 1.0	\$0.00
Air Voids	6	5,750	90.418	1.03500	\$1,645.82	3.000	2.533	0.467	0.582	0.600		Tons	0
				I/DP:	\$2,522.16						2\	⁄ Adj.	\$0.00
							· · ·						
Joint De	nsity .												
	<i>nsity</i> rice	Proc. No Te	sts To	Qual ns Lev		I/DI	•	TV	Mean	Mean to TV	Std Dev	V	St Dev. - V
Grad. Pi	- 1	No Te	sts Toi 22 24,7	ns <i>Lev</i>	el Factor	I/ DI (\$5,987			Mean 89.740	to TV 2.260	Std Dev 2.194		

Totals: 14205	•	Tests	Tons	I/DP			
	AC	56	55,409	(\$8,204.69)	CTS I/DP		
Der	nsity	112	55,409	\$27,817.81	\$0.00		
,	VMA	56	55,409	\$3,692.82	2V Adj		
Air V	oids	56	55,409	(\$7,403.80)	\$0.00		
Joint Der	nsity	50	55,409	\$1,813.83			
	Plan (Quant	67,200	Project I/DP	\$17,715.97	CPFC	1.01067

Comments: AC 1 test 2 x V out.

Subacco	unt: 14	4207	ST	1 <i>3851-</i>	015	Arkansa	s River to	SH		Regio	on: 2	Si	upplier:	11
Mix Desig	gn No	243		Proce	ess No 1	Gı	ading S	()	PG	Pr	ice Per	Ton \$28.9	 95	
	Tests	Tons	Quali Leve	•	ay ctor	I/DP	TV	Mear	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
AC	69	68,93	92.6	77 1.0°	1894	\$3,779.00	5.300	5.410	0.110	0.131	0.200	-0.069	CTS	0
Density	85	42,43	87.83	38 0.9	7872	(\$9,151.66	94.000	92.858	1.142	0.736	1.100	-0.364	Tons I/DP	\$0.00
VMA	69	68,93	99.9	24 1.0	5500 \$	10,976.65	14.400	14.232	2 0.168	0.336	0.600	-0.264	PF 1.0	•
Air Voids	69	68,93	99.3	7 1.0	5500 \$	32,929.96	3.100	3.075	0.025	0.450	0.600	-0.150	Tons	26,500
				1/1	DP:	38,533.95	5					2\	/ Adj.	\$0.00
<i>Joint De</i> Grad. P	nsity rice	Proc. No	Tests	Tons	Quality Level	Pay Factor	· I/D	P	τv	Mean	Mean to TV	Std Dev	v	St Dev. - V
S \$2	8.95	1	28 6	8,938	92.895	1.03221	\$9,64	1.34	92.000	89.590	2.410	1.097	1.600	-0.503
Totals	: 1420	7		Tes			I/DP							··· <u>·</u>
			AC	-	,	938	\$3,77			5 I/DP				
			Density VMA		,	938 039	(\$9,15			\$0.00 ′ Adi				
			Air Voids		,		\$10,97 \$32,92			\$0.00				
		Joi	nt Densit	_	8 68,		\$9,64			Ψ0.00				
			Pi	an Qua	nt 68,	335	Project I	/DP :	\$48,175.2	9	CPFC	1.02414		

Comments:

Subaccount: 14210

STA 0831-087

SH 83A from SH 115 to

Region: 2

Supplier: 49

Mix Desig	gn No	12410RA	P	Process No	1 Grad	ding S	() F	PG	Pric	ce Per	Ton \$35.3	38	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC	30	29,754	86.196	0.98696	(\$1,372.92)	5.300	5.371	0.071	0.191	0.200	-0.009	CTS	c
Density	62	30,754	97.789	1.05500	\$20,945.47	94.000	94.010	0.010	0.889	1.100	-0.211	Tons I/DP	\$0.00
VMA	31	30,754	88.898	1.00466	\$507.14	14.200	13.474	0.726	0.390	0.600	-0.210	PF 1.0	Ψ0.00
Air Voids	31	30,754	91.978	1.02500	\$8,160.29	3.500	3.090	0.410	0.565	0.600	-0.035	Tons	0
				I/DP:	\$28,239.98						2\	/ Adj.	\$0.00
Mix Desig	gn No	12410RAI	•	Process No	2 Grad	ding S	() F	²G	Pric	e Per î	Ton \$35.3	38	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	er
AC	1	1,000		0.45000	(\$1,945.90)	5.300				0.200		CTS Tons	0
Density		0			\$0.00	94.000				1.100		I/DP	\$0.00
VMA					\$0.00					0.600		PF 1.0	φυ.υι
Air Voids					\$0.00					0.600		Tons	0
				I/DP:	(\$1,945.90)						2 V	/ Adj.	\$0.00
Mix Desig	gn No	14210LE\	1	Process No	1 Grad	ling SX	() F	·G	Pric	e Per 1	Ton \$32.7	75	
	Tests	Tons	Quality Level	Pay Factor	I/DP	τv	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	7	7,000	98.613	1.03500	\$802.37	6.500	6.586	0.086	0.117	0.200	-0.083	CTS	_
Density	•	0	00.010	1.00000	\$0.00	94.000	0.500	0.000	0.117	1.100	-0.005	Tons	0
VMA	8	8,000	26.672	0.53111	(\$12,284.95)	16.800	15.463	1.337	0.213	0.600	-0.387	I/DP	\$0.00
Air Voids	8	8.000	52.296	0.79639	(\$16,003.87)	3.000	1.850	1.150	0.825	0.600	0.225	PF 1.0 Tons	8,000
		-,		I/DP:	(\$27,486.45)		,,,,,,		0.020	0.000		Adj.	\$0.00
Mix Desig	gn No	14210LEV	,	Process No	2 Grad	ling SX	() F	 PG	Pric	e Per 1	on \$32.7	'5	
	Tests	Tons	Quality Level	Pay Factor	I/DP	τv	Mean	Mean to TV	St Dev.	v	St Dev.	Oth	er
AC	1	1,000		0.45000	(\$1,801.25)	6.500				0.200		CTS	
Density		0			\$0.00	94.000				1.100		Tons	0
VMA					\$0.00					0.600		I/DP	\$0.00
Air Voids					\$0.00					0.600		PF 1.0 Tons	0
				I/DP:	(\$1,801.25)						2V	Adj.	\$0.00
	n No	14210LEV	'A	Process No	1 Grad	ling SX	() F	'G	Pric	e Per 1	on \$32.7	5	
Mix Desig			Quality	Pay	UDD.	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
Mix Desig	Tests	Tons	Level	Factor	1/08	1 4				-			
Mix Desig AC	Tests	Tons 6,000	Level 39.354	Factor 0.70269	I/DP (\$5,842.21)				0.160	0.200		стѕ	_
		Tons 6,000 0		Factor 0.70269	(\$5,842.21) \$0.00	6.400 94.000	6.053	0.347	0.160	0.200 1.100	-0.040	Tons	0
		6,000	39.354		(\$5,842.21) \$0.00	6.400 94.000	6.053	0.347		1.100	-0.040	Tons I/DP	
AC Density	6	6,000 0		0.70269	(\$5,842.21)	6.400	6.053		0.160 0.214 0.442			Tons	0 \$0.00 7,141

Mix D	esigı	n No	1421	OLEVA	Pro	ocess f	Vo 2	Gr	ading SX	0	PG	Pi	rice Per	Ton \$32.7	75	
	7	Tests	Ton		Quality Level	Pay Factor		I/DP	TV	Mean	Mean to TV	St Dev	. v	St Dev. - V	Ot	her
	AC	1	1,14	41				\$0.00	6.400				0.200		CTS	,
Den	sity		·	0				\$0.00	94.000				1.100		Tons	0
٧	MA	1	1,14	11				\$0.00	17.000				0.600		I/DP	\$0.00
Air Vo	oids	1	1,14					\$0.00					0.600		PF 1.0 Tons	0
		·	.,.	.,		I/DP:	_	\$0.00	_				0.000		/ Adj.	\$0.00
Joint	Den	ısity	_													
Grad.	Pri	-	Proc. No	Tests	Tons		uality .evel	Pay Factor	I/DI	P	TV	Mean	Mean to TV	Std Dev	V	St Dev.
S	\$35		1	16	30,75		4.135	0.75933	(\$39,279			88.190	3.810	1.770	1.600	0.170
sx	\$35	5.38	2	1	15,14				•	,	92.000				1.600	
	tale.	1421	10		т	ests	Tor	ns	I/DP							
10	nuis.	1741	. 0		AC .	46	45,8		(\$10,15	9.91)	СТ	S I/DP				
				De	nsity	62	45,8		\$20,94	,		\$0.00				
					VMA	46	45,8		(\$16,15	2.32)	2\	/ Adj				
				Air V	oids/	46	45,8	395	(\$8,53	8.47)		\$0.00				
			Jo	int De	nsity	17	45,8	395	(\$39,27	9.79)						
					DI 0	luant	36,9	054	Project I/	DP /	53,185.0	12)	CPFC	0.96642		
					Plan C	tuanit	30,8	7.74	0,000	DI (,	,00,100.0	· <i>~)</i>	01.0	0.30072		
	Co	omme	nts: 2	tests:	2 x V ou		30,8	7.74	0,000	D 1 (.	, 100.0	, <u>, , , , , , , , , , , , , , , , , , </u>	0.10	0.30042		
Suba						t		Fruitvale		, (.					upplier:	16
	ссои	nt: 14	4218		2 x V ou STA 070	t 91-161		Fruitvale	e East			Regio	on: 3	Si	upplier:	16
	ссои	nt: 14	4218)3	2 x V ou STA 070	t		Fruitvale			PG Mean	Regio	on: 3		55	
Subac Mix Do	ccour esigr	nt: 14	4218)3 C	2 x V ou STA 070 Pro)1-161 ocess M	lo 1	Fruitvale	e East		PG Mean	Regio	on: 3	Si Ton \$34.6	Oti	<i>16</i>
Mix De	ccour esigr	nt: 14 n No	<i>4218</i> 10230)3 C s	2 x V ou STA 070 Produality Level	01-161 ocess M	<i>l</i> o 1	Fruitvald Gra	e East ading SX	0	PG Mean to TV	Regio	on: 3	Si Ton \$34.6 St Dev.	Oti	her
Mix De	ccour esigr 1 AC	nt: 14 n No Tests	<i>4218</i> 10230 Ton)3 S 21 8	2 x V ou STA 070 Produality Level 32.343	01-161 ocess M Pay Factor	l o 1	Fruitvald Gra	e East ading SX	() Mean 5.539	PG Mean to TV 0.061	Regio	on: 3 rice Per 1	St Dev. - V	Oti CTS Tons	her 500
Mix De	ccour esigr 1 AC	nt: 14 7 No Tests	4218 1023 0 Ton 18,42 17,49	03 S 21 &	2 x V ou STA 070 Productity Level 32.343 039.653 1	OI-161 Ocess A Pay Factor 0.97225	l o 1	Fruitvalo Gra I/DP \$1,771.38	e East ading SX TV 5.600 94.000	() Mean 5.539 93.338	PG Mean to TV 0.061 0.662	Regio	on: 3 . V 0.200 1.100	St Dev V 0.016 -0.054	Oti CTS Tons I/DP	her 500
Mix De	esigr AC sity	nt: 14 n No Tests 19 37	1023 0 Ton 18,42 17,49 18,42	03 C s 21 8 21 8	2 x V ou STA 070 Productity Level 32.343 039.653 131.891 0	Pay Factor 0.97225	/ 0 1	Fruitvalo Gra I/DP \$1,771.38; \$1,295.80	e East TV 5.600 94.000 15.300	() Mean 5.539 93.338 14.395	PG Mean to TV 0.061 0.662 0.905	Pr St Dev 0.216 1.046 0.322	on: 3 ice Per 7 . V 0.200 1.100 0.600	St Dev V 0.016 -0.054 -0.278	CTS Tons I/DP PF 1.0	500 \$107.18
Mix De	esigr AC sity	nt: 1- 7 No Tests 19 37 19	4218 1023 0 Ton 18,42 17,49	03 C s 21 8 21 8	2 x V ou STA 070 Productity Level 32.343 039.653 131.891 0	01-161 Pay Factor 0.97225	do 1	Fruitvalo Gra I/DP \$1,771.38; \$1,295.80	E East TV 5.600 94.000 15.300 3.500	() Mean 5.539 93.338	PG Mean to TV 0.061 0.662 0.905	## Region	on: 3 . V 0.200 1.100	St Dev V 0.016 -0.054 -0.278 -0.108	Oti CTS Tons I/DP	her
Mix De	esigr AC sity MA	nt: 14 7 No Tests 19 37 19	4218 10230 Ton 18,42 17,49 18,42 18,42	03 C s 21 8 21 8	2 x V ou STA 070 Productity Level 32.343 039.653 131.891 0	Pay Factor 0.97225 0.00611 0.96929 0.03537	(S)	Fruitvalo Gra I/DP \$1,771.38; \$1,295.80 \$1,960.14; \$6,772.27 \$4,443.73	E East TV 5.600 94.000 15.300 3.500	() Mean 5.539 93.338 14.395	PG Mean to TV 0.061 0.662 0.905	Pr St Dev 0.216 1.046 0.322	on: 3 ice Per 1 . V 0.200 1.100 0.600 0.600	St Dev V 0.016 -0.054 -0.278 -0.108	Ott CTS Tons I/DP PF 1.0 Tons	500 \$107.18 428 \$0.00
Mix Dens Vens Vir Vo	esigr AC sity MA	nt: 14 7 No Tests 19 37 19 19	4218 10230 Ton 18,42 17,49 18,42 18,42	03 C s 21 8 21 8	2 x V ou STA 070 Productity Level 32.343 0 39.653 1 31.891 0 92.889 1	Pay Factor 0.97225 0.00611 0.96929 1.03537 1/DP:	do 1	Fruitvald Gra I/DP \$1,771.38; \$1,295.80 \$1,960.14; \$6,772.27 \$4,443.73	E East TV 5.600 94.000 15.300 3.500	() Mean 5.539 93.338 14.395 3.011	PG Mean to TV 0.061 0.662 0.905 0.489	Regio Pr St Dev 0.216 1.046 0.322 0.492	on: 3 ice Per 1 . V 0.200 1.100 0.600 0.600	St Dev V 0.016 -0.054 -0.278 -0.108	Ott CTS Tons I/DP PF 1.0 Tons	500 \$107.18 428 \$0.00 St Dev.
Dens V Air Vo	esigr AC sity MA ids	nnt: 14 77 No Tests 19 37 19 19	4218 10230 Ton 18,42 17,49 18,42 18,42	03 G s 1 21 8 93 8 21 8	2 x V ou STA 070 Productity Level 32.343 039.653 131.891 0	Pay Factor 0.97225 0.00611 0.96929 1.03537 1/DP:	of 1	Fruitvalo Gra I/DP \$1,771.38; \$1,295.80 \$1,960.14; \$6,772.27 \$4,443.73	E East TV 5.600 94.000 15.300 3.500	() Mean 5.539 93.338 14.395 3.011	PG Mean to TV 0.061 0.662 0.905 0.489	Pr St Dev 0.216 1.046 0.322	on: 3 ice Per 1 . V 0.200 1.100 0.600 0.600	St Dev V 0.016 -0.054 -0.278 -0.108	Ott CTS Tons I/DP PF 1.0 Tons	500 \$107.18 428 \$0.00
Dens V Air Vo Joint Grad. SX	esign AC sity MA ids Price \$35.	nnt: 14 n No Tests 19 37 19 19 ce .54	10230 Ton 18,42 17,49 18,42 18,42 Proc. No	03 C s 1 21 8 21 8 21 9	2 x V ou STA 070 Productity Level 32.343 0 39.653 1 31.891 0 92.889 1	Pay Factor 0.97225 0.00611 0.96929 1.03537 1/DP:	of 1	Fruitvald Gra I/DP \$1,771.38; \$1,295.80 \$1,960.14; \$6,772.27 \$4,443.73 Pay Factor 0.97371	e East TV 5.600 94.000 15.300 3.500	() Mean 5.539 93.338 14.395 3.011	PG Mean to TV 0.061 0.662 0.905 0.489	Regio Pr St Dev 0.216 1.046 0.322 0.492	on: 3 . V	St Dev V 0.016 -0.054 -0.278 -0.108 2V	Ottl CTS Tons I/DP PF 1.0 Tons / Adj.	500 \$107.18 428 \$0.00 St Dev.
Dens V Air Vo Joint Grad. SX	esign AC sity MA ids Price \$35.	nnt: 14 77 No Tests 19 37 19 19	10230 Ton 18,42 17,49 18,42 18,42 Proc. No	03 C s 1 21 8 21 8 21 9	2 x V ou STA 070 Productity Level 32.343 0 39.653 1 31.891 0 92.889 1	Pay Factor 0.97225 0.00611 0.96929 0.03537 1/DP:	(\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (Fruitvald Gra I/DP \$1,771.38; \$1,295.80 \$1,960.14; \$6,772.27 \$4,443.73 Pay Factor 0.97371	E East Ading SX TV 5.600 94.000 15.300 3.500	() Mean 5.539 93.338 14.395 3.011	PG Mean to TV 0.061 0.662 0.905 0.489 TV 92.000	Regio Pr St Dev 0.216 1.046 0.322 0.492	on: 3 . V	St Dev V 0.016 -0.054 -0.278 -0.108 2V	Ottl CTS Tons I/DP PF 1.0 Tons / Adj.	500 \$107.18 428 \$0.00 St Dev.
Dens V Air Vo Joint Grad. SX	esign AC sity MA ids Price \$35.	nnt: 14 n No Tests 19 37 19 19 ce .54	10230 Ton 18,42 17,49 18,42 18,42 Proc. No	O3 S 1 21 8 21 8 21 9	2 x V ou STA 070 Pro Quality Level 32.343 0 39.653 1 31.891 0 32.889 1	Pay Factor 0.97225 0.00611 0.96929 0.03537 I/DP:	(\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (Fruitvald Gra I/DP \$1,771.38; \$1,295.80 \$1,960.14; \$6,772.27 \$4,443.73 Pay Factor 0.97371	E East Ading SX TV 5.600 94.000 15.300 3.500 I/DP (\$2,581	() Mean 5.539 93.338 14.395 3.011	PG Mean to TV 0.061 0.662 0.905 0.489 TV 92.000	Regio Pr St Dev 0.216 1.046 0.322 0.492 Mean 89.620	on: 3 . V	St Dev V 0.016 -0.054 -0.278 -0.108 2V	Ottl CTS Tons I/DP PF 1.0 Tons / Adj.	500 \$107.18 428 \$0.00 St Dev.
Dens V Air Vo Joint Grad. SX	esign AC sity MA ids Price \$35.	nnt: 14 n No Tests 19 37 19 19 ce .54	10230 Ton 18,42 17,49 18,42 18,42 Proc. No	03 G s 1 21 8 03 8 21 8 21 9	2 x V ou STA 070 Pro Quality Level 32.343 0 39.653 1 31.891 0 32.889 1 Tons 18,421	Pay Factor 0.97225 0.00611 0.96929 0.03537 1/DP:	(\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (\$ (Fruitvald Gra I/DP \$1,771.38; \$1,295.80 \$1,960.14; \$6,772.27 \$4,443.73 Pay Factor 0.97371	E East Ading SX TV 5.600 94.000 15.300 3.500 I/DP (\$2,581	() Mean 5.539 93.338 14.395 3.011	PG Mean to TV 0.061 0.662 0.905 0.489 TV 92.000 CT: \$1	Regio Pr St Dev 0.216 1.046 0.322 0.492 Mean 89.620	on: 3 . V	St Dev V 0.016 -0.054 -0.278 -0.108 2V	Ottl CTS Tons I/DP PF 1.0 Tons / Adj.	500 \$107.18 428 \$0.00 St Dev.
Dens V Air Vo Joint Grad.	esign AC sity MA ids Price \$35.	nnt: 14 n No Tests 19 37 19 19 ce .54	10230 Ton 18,42 17,49 18,42 18,42 Proc. No 1	December 201	2 x V ou STA 070 Pro Quality Level 32.343 0 39.653 1 31.891 0 32.889 1 Tons 18,421 T AC nsity VMA loids	Pay Factor 0.97225 0.00611 0.96929 0.03537 1/DP:	Jality evel 1.597 Ton 18,4 18,4 18,4	Fruitvald Gra I/DP \$1,771.38; \$1,295.80 \$1,960.14; \$6,772.27 \$4,443.73 Pay Factor 0.97371 ISS 121 121 121	E East TV 5.600 94.000 15.300 3.500 I/DP (\$2,581	() Mean 5.539 93.338 14.395 3.011 1.77) 1.38) 5.80 0.14) 2.27	PG Mean to TV 0.061 0.662 0.905 0.489 TV 92.000 CT3 \$1 2V	Regio Pr St Dev 0.216 1.046 0.322 0.492 Mean 89.620	on: 3 . V	St Dev V 0.016 -0.054 -0.278 -0.108 2V	Ottl CTS Tons I/DP PF 1.0 Tons / Adj.	500 \$107.18 428 \$0.00 St Dev.
Dens V Air Vo Joint Grad.	esign AC sity MA ids Price \$35.	nnt: 14 n No Tests 19 37 19 19 ce .54	10230 Ton 18,42 17,49 18,42 18,42 Proc. No 1	03 G s 1 21 8 03 8 21 8 21 9	2 x V ou STA 070 Pro Quality Level 32.343 0 39.653 1 31.891 0 32.889 1 Tons 18,421 T AC nsity VMA loids	Pay Factor 0.97225 0.00611 0.96929 0.03537 1/DP: 81 81 93 7 19 16	(s)	Fruitvald Gra I/DP \$1,771.38; \$1,295.80 \$1,960.14; \$6,772.27 \$4,443.73 Pay Factor 0.97371 IS 121 121 121	E East TV 5.600 94.000 15.300 3.500 I/DP (\$2,581	() Mean 5.539 93.338 14.395 3.011 1.38) 5.80 0.14) 2.27 1.77)	PG Mean to TV 0.061 0.662 0.905 0.489 TV 92.000 CT3 \$1 2V	Regio Pr St Dev 0.216 1.046 0.322 0.492 Mean 89.620 S I/DP 07.18	on: 3 . V	St Dev V 0.016 -0.054 -0.278 -0.108 2V	Ottl CTS Tons I/DP PF 1.0 Tons / Adj.	500 \$107.18 428 \$0.00 St Dev.

Comments:

Subacco	unt: 14	4235	STA 4	701-104	C-470 K	Ken Caryl	to Wads	sworth	Regio	n: 6	Si	upplier:	10
Mix Desig	gn No	1470032	,	Process N	o 1 Gi	rading S	() F	-G	Pri	ce Per	Ton \$38.3	35	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev.	Oth	er
AC	23	23,751	88.429	1.00706	\$643.07	5.400	5.500	0.100	0.165	0.200	-0.035	CTS	0
Density	54	23,751	100.000	1.05500	\$20,038.72	94.000	94.067	0.067	0.447	1.100	-0.653	Tons I/DP	\$0.00
VMA	23	23,751	98.057	1.05000	\$4,554.25	16.400	16.022	0.378	0.413	0.600	-0.187	PF 1.0	φυ.υυ
Air Voids	23	23,751	99.398	1.05000	\$18,217.02	3.000	3.222	0.222	0.414	0.600	-0.186	Tons	0
				I/DP:	\$43,453.06	- 5					2\	/ Adj.	\$0.00
Totals	: 1423	25	· · · · · · · · · · · · · · · · · · ·	Tests	Tons	I/DP							
			AC	23	23,751	\$64	3.07	CTS	S I/DP				
			Density	54	23,751	\$20,03	8.72		\$0.00				
			VMA	23	23,751	\$4,55	4.25	2V	Adj				
			ir Voids Density	23	23,751	\$18,21	7.02		\$0.00				
			Plan	Quant	25,651	Project I/	DP \$4	43,453.0	6	CPFC	1.04771		

Comments:

Subaccount: 14244

STA 0361-072

US 36 Wads to Lowe

Region: 6

Supplier: 33

Mix Desig	gn No	147010	1	Process No	Gra	ding S	(100) F	PG	Pric	e Per 1	Fon \$38.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	ner
AC	9	8,912	95.482	1.04000	\$1,354.62	5.100	4.993	0.107	0.122	0.200	-0.078	CTS	c
Density	18	8,912	93.522	1.03899	\$4,621.63	94.000	93.639	0.361	1.058	1.100	-0.042	Tons I/DP	\$0.00
VMA	9	8,912	90.661	1.03134	\$1,061.30	13.100	13.744	0.644	0.430	0.600	-0.170	PF 1.0	φυ.υι
Air Voids	9	8,912	96.982	1.04000	\$4,063.87	3.000	2.722	0.278	0.536	0.600	-0.064	Tons	0
				I/DP:	\$11,101.42						2V	Adj.	\$0.00
Mix Desig	gn No	147010-1		Process No 1	Grad	ding S	(100) F	PG	Pric	e Per 1	"on \$3 8.0	00	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	v	St Dev. - V	Oth	ner
AC	7	7,096	92.793	1.03500	\$943.77	5.100	5.013	0.087	0.153	0.200	-0.047	CTS Tons	0
Density	16	8,109	97.550	1.05000	\$5,392.49	94.000	93.112	0.888	0.594	1.100	-0.506	I/DP	\$0.00
VMA	8	8,109	93.845	1.04000	\$1,232.57	13.700	14.287	0.587	0.419	0.600	-0.181	PF 1.0	φυ.υυ
Air Voids	8	8,109	79.188	0.98262	(\$1,606.87)	3.000	3.675	0.675	0.632	0.600	0.032	Tons	0
				I/DP:	\$5,961.96						2V	' Adj.	\$0.00
Mix Desig	n No	147010-1	i	Process No 2	. Grad	ding S	(100) F	·G	Pric	e Per 1	on \$38.0	10	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	٧	St Dev.	Oth	ег
AC	1	1,013	Level	0.26250	(\$2,838.93)	5.100	Moan	10 14	or bev.	0.200	- •	стѕ	
Density	,	0		0.20230	\$0.00	94.000				1.100		Tons	0
VMA		U			\$0.00	34.000				0.600		I/DP	\$0.00
Air Voids					\$0.00					0.600		PF 1.0 Tons	0
				I/DP:	(\$2,838.93)					0.000	2V	'Adj.	\$0.00
Mix Desig	ın No	147059		Process No 1	Grad	ding S	(100) F	·G	Prio	e Per T	on \$38.0	ın	
_			Quality	Pay			` ′	Mean			St Dev.	Oth	er
40	Tests	Tons	Level	Factor	I/DP	TV	Mean	to TV	St Dev.	V	- V	CTS	
AC	3	2,890	100.000	1.02500	\$274.55 \$1.343.36	4.700	4.563	0.137	0.074	0.200	-0.126	Tons	0
Density VMA	8	3,855	88.780	1.02620 1.03000	\$1,343.26 \$439.47	13.900	93.313	0.687	1.096	1.100	-0.004	I/DP	\$0.00
Air Voids	4 3	3,855 2,890	90.038	1.03000	\$823.65	3.000	14.525 3.500	0.625 0.500	0.479	0.600	-0.121	PF 1.0	^
All Volus	3	2,090	100.000			3.000	3.500	0.500	0.436	0.600	-0.164	Tons	0
				I/DP:	\$2,880.93						2V	Adj.	\$0.00
Mix Desig	ın No	147059		Process No 2	Grad	ling S	(100) F	G	Pric	e Per T	on \$38.0	0	
	Tests	Tons	Quality Level	Pay Factor	I/DP	TV	Mean	Mean to TV	St Dev.	V	St Dev. - V	Oth	er
AC	1	965		1.00000	\$0.00	4.700				0.200		CTS	0
Density		0			\$0.00	94.000				1.100		Tons	0
VMA					\$0.00					0:600		I/DP PF 1.0	\$0.00
				4.00000									
Air Voids	1	965		1.00000	\$0.00	3.000				0.600		Tons	0

Mix De	esig	n No	1470	59-1		P	roces	s No 1	Gi	rading S	(100)	PG	P	rice Per	Ton \$38.0	۰ 00	
		Tests	Tor	ns		ality evel	Pay Fact	,	I/DP	TV	Mea	Mean n to TV	St Dev	,. V	St Dev.	01	her
	AC	23	23,2	56	94	.885	1.045	51	\$4,021.68	3 4.700					-	CTS	_
Dens	ity	49	23,2	56	90	.492	1.007	94	\$2,454.46	94.000	93.99	6 0.004	1.210			Tons I/DP	00.00
V	MA	23	23,2	56	97	.192	1.050	00	\$4,418.64	14.500	14.07	4 0.426	0.418	0.600	-0.182	PF 1.0	\$0.00
Air Voi	ids	23	23,2	56	95	.378	1.048	28 \$	12,800.59	3.200	2.80	9 0.391	0.491	0.600	-0.109	Tons	0
							I/DF): <u> </u>	23,695.37	7					2\	/ Adj.	\$0.00
Joint .		<i>nsity</i> ice	Proc. No	Tes	ts	Ton		Quality Level	Pay Factor	ı/D	P	τv	Mean	Mean to TV	Std Dev	v	St Dev.
S	\$38	3.00	1		8	17,02	21	45.512	0.73450	(\$25,75	9.03)	92.000	87.790	4.210	1.791	1.600	0.191
s	\$38	3.00	2		8	27,1	11	81.207	0.99279	(\$1,11	4.38)	92.000	89.340	2.660	1.486	1.600	-0.114
Tot	tals:	1424	14				Tests	To	ns	I/DP							
						AC	44	44,	132	\$3,75	5.69	СТ	S I/DP				
)ens	-	91	44,	132	\$13,81	1.84		\$0.00				
						MA	44	44,		\$7,15	1.98	2\	/ Adj				
					· Voi		44	44,	132	\$16,08	1.24		\$0.00				
			J	oint C)ens	sity	16	44,	132	(\$26,87	3.41)						
						Plan	Quan	t 52,4	404	Project I/	DP	\$13,927.3	<u> </u>	CPFC	1.00830		
	C	omme	nts:														

Totals for all Projects Projects with Bid Dates from 1/1/2003 to 12/31/2003.

Number of Projects:	15	Tests	Tons	I/DP	
	AC	569	560,657	(\$230.46)	CTS I/DP
	Density	1061	560,657	\$158,969.57	(\$1,617.68)
•	VMA	569	560,657	\$26,250.24	2V Adj
	Air Voids	569	560,657	\$101,577.92	\$0.00
	Joint Density	262	495,209	(\$18,667.61)	
	Pla	n Quant	569,645	Total I/DP \$266,28	31.98

Calculated Pay Factor Composite and I/DP by Region, VA

Criteria: Projects with Bid Dates from 1/1/2003 to 12/31/2003.

PFC is back calculated from the Project's I/DP.

A Calculated Average Unit Price is used in the calculation.

Regio	~ _				Total	Average	Pay Factor		
Subacct.	Bid Date	Project Code	Reg.	Grading	Tons	Price	Composite	Project I/DP	Supplier
14202	02/13/03	NH 0504-045	2	S	30,416	\$34.23	1.02979	\$31,016.88	32
14203	02/06/03	NH 0505-038	2	s	41,669	\$32.23	1.02827	\$37,966.69	11
14201	03/27/03	NH 0504-044	2	s	76,797	\$32.12	1.02558	\$63,108.44	14
14207	02/27/03	STA 3851-015	2	S	68,938	\$28.95	1.02414	\$48,175.29	11
14205	01/23/03	STU 1151-016	2	s	55,409	\$29.95	1.01067	\$17,715.97	49
14200	01/30/03	NH 0243-066	2	SX	27,000	\$32.41	1.00431	\$3,775.24	49
14210	06/05/03	STA 0831-087	2	S	45,895	\$34.51	0.96642	(\$53,185.02)	49
Region	2	Number of Pro	ects:	7	CPFC:	Maximum:	1.02979		
		Total 1	ons:	346,124		Minimum:	0.96642		
						Average:	1.01274		
		Incentiv	e/Disi	ncentive P	ayments		Sum I/DPs:	\$148,573.49	
		P	ositive	e I/DPs:	6		Maximum:	\$63,108.44	
		Ne	egative	e I/DPs:	1		Minimum:	(\$53,185.02)	
						A	verage IDP:	\$21,224.78	
Region	n 3						·····		
Subacct.	Bid Date	Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
14218	03/06/03	STA 0701-161	3	SX	18,421	\$34.65	1.00292	\$1,861.96	16
13865	03/27/03	STR 0401-018	3	SX	60,264	\$36.30	0.99270	(\$15,972.98)	19
Region	3	Number of Proj	ects:	2	CPFC:	Maximum:	1.00292	- ··· ·	
		Total T	ons:	78,685		Minimum:	0.99270		
						Average:	0.99781		
		Incentiv	e/Dişi	ncentive P	ayments		Sum I/DPs:	(\$14,111.02)	
		P	ositive	I/DPs:	1		Maximum:	\$1,861.96	
					4			/ - / -	
		Ne	egative	l/DPs:	1		Minimum:	(\$15,972.98)	

Region	n 6								
Subacct.		Project Code	Reg.	Grading	Total Tons	Average Price	Pay Factor Composite	Project I/DP	Supplier
14235	02/06/03	STA 4701-104	6	S	23,751	\$38.35	1.04771	\$43,453.06	10
11210	01/30/03	STA 072A-02	6	s	21,000	\$31.50	1.04005	\$26,491.23	13
13348	01/16/03	STA 0881-012	6	s	16,161	\$36.50	1.03381	\$19,945.90	10
12021	01/09/03	NH 0404-032	6	s	20,000	\$40.50	1.02959	\$23,967.15	19
6033	08/21/03	MTCE 06-033	6	s	10,804	\$32.25	1.01158	\$4,034.85	33
14244	05/22/03	STA 0361-072	6	s	44,132	\$38.00	1.00830	\$13,927.34	33
Region	6	Number of Pro	ects:	6	CPFC:	Maximum:	1.04771		
		Total 1	ons:	135,848		Minimum:	1.00830		
						Average:	1.02851		
		Incentiv	re/Disi	ncentive P	ayments		Sum I/DPs:	\$131,819.53	
		P	ositive	I/DPs:	6		Maximum:	\$43,453.06	
		No	egative	I/DPs:	0		Minimum:	\$4,034.85	
						A	verage IDP:	\$21,969.92	
Statewi	de Total	s: 1/1/2003	to 12/	31/2003.					
		Number of Proj	ects:	15	CPFC	Maximum:	1.04771		
		Total To	ns: 56	60,657		Minimum:	0.96642		
						Average:	1.01706		
		Incentiv	e/Disir	centive Pa	ayments		Sum I/DPs:	\$266,282.00	
		P	ositive	I/DPs:	13		Maximum:	\$63,108.44	
		Ne	gative	I/DPs:	2		Minimum:	(\$53,185.02)	
						A	verage IDP:	\$17,752.13	

Asphalt Content - Process Information, VA

Criteria: Projects with Bid Dates from 1/1/2003 to 12/31/2003.

Processes with less than 3 tests not included.

Gradii	ng: S	•													
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	TV	Mean:	Mean to TV	St. Dev.	v	StDe\ - V
14244	6	52,404	147059	\$38.00	1	2,890	3	100.000	1.02500	4.70	4.56	0.14	0.074	0.20	-0.13
14203	2	40,616	244	\$30.43	1	21,545	22	99.231	1.05000	5.20	5.26	0.06	0.107	0.20	-0.09
14202	2	30,733	14202	\$32.00	1	13,455	14	98.006	1.04500	5.60	5.59	0.01	0.140	0.20	-0.06
11210	6	20,258	147014	\$31.50	1	21,000	21	96.996	1.05000	5.10	5.20	0.10	0.110	0.20	-0.09
14203	2	40,616	249	\$34.15	1	20,124	21	96.794	1.05000	5.00	5.00	0.00	0.147	0.20	-0.05
14244	6	52,404	147010	\$38.00	1	8,912	9	95.482	1.04000	5.10	4.99	0.11	0.122	0.20	-0.08
13348	6	17,224	1470031	\$36.50	1	16,161	17	95.386	1.04831	5.40	5.49	0.09	0.126	0.20	-0.07
14244	6	52,404	147059-1	\$38.00	1	23,256	23	94.885	1.04551	4.70	4.58	0.12	0.110	0.20	-0.09
14201	2	66,038	14201B	\$30.00	1	32,735	33	94.356	1.03946	5.30	5.23	0.07	0.146	0.20	-0.05
14244	6	52,404	147010-1	\$38.00	1	7,096	7	92.793	1.03500	5.10	5.01	0.09	0.153	0.20	-0.05
14207	2	68,335	243	\$28.95	1	68,938	69	92.677	1.01894	5.30	5.41	0.11	0.131	0.20	-0.07
6033	6	11,055	147010-1	\$32.25	1	10,804	11	91.870	1.03495	5.10	5.12	0.02	0.180	0.20	-0.02
14201	2	66,038	14201T	\$33.70	1	44,062	45	90.614	1.01006	5.20	5.12	0.08	0.162	0.20	-0.04
14235	6	25,651	1470032	\$38.35	1	23,751	23	88.429	1.00706	5.40	5.50	0.10	0.165	0.20	-0.03
12021	6	23,310	147004	\$40.50	1	20,000	24	86.499	0.99756	5.20	5.19	0.01	0.204	0.20	0.00
14210	2	36,954	2410RAP	\$35.38	1	29,754	30	86.196	0.98696	5.30	5.37	0.07	0.191	0.20	-0.01
14205	2	67,200	239	\$27.26	1	18,000	18	83.755	0.98318	5.40	5.49	0.09	0.200	0.20	0.00
14202	2	30,733	14202T	\$36.00	1	16,961	17	83.197	0.98158	5.60	5.46	0.14	0.169	0.20	-0.03
14205	2	67,200	237	\$32.13	1	30,659	31	81.562	0.95315	5.40	5.53	0.13	0.186	0.20	- 0.01
14205	2	67,200	240	\$27.26	1	5,750	6	64.737	0.91494	5.60	5.36	0.24	0.152	0.20	-0.05
Totals	Grad	ding: S	<u> </u>					Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V
			Tons: 43	5,853			Best:	100.000	1.05000			0.00	0.074	0.20	-0.13
		Pro	cesses:	20		V	Vorst:	64.737	0.91494			0.24	0.204	0.20	0.00
		٠.	Tests:	444	Weig	ghted Av	erage:	90.942	1.01575			0.09	0.152	0.20	-0.05

Gradii	ıg: S	X													
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	TV	Mean:	Mean to TV	St. Dev	. v	StDev - V
14210	2	36,954	4210LEV	\$32.75	1	7,000	7	98.613	1.03500	6.50	6.59	0.09	0.117	0.20	-0.08
13865	3	62,608	76103B	\$36.30	1	51,264	51	88.684	0.99393	5.60	5.59	0.01	0.191	0.20	-0.01
14218	3	18,652	102303	\$34.65	1	18,421	19	82.343	0.97225	5.60	5.54	0.06	0.216	0.20	0.02
14200	2	28,607	236	\$32.41	1	27,000	27	80.816	0.95161	6.50	6.44	0.06	0.223	0.20	0.02
13865	3	62,608	78103	\$36.33	1	9,000	9	68.104	0.90880	5.70	5.61	0.09	0.288	0.20	0.09
14210	2	36,954	210LEVA	\$32.75	1	6,000	6	39.354	0.70269	6.40	6.05	0.35	0.160	0.20	-0.04
				18,685 6 119	Wei	\ ghted Av	Best: Vorst: erage:	Quality Level 98.613 39.354 82.441	Pay Factor 1.03500 0.70269 0.96218			Mean to TV 0.01 0.35 0.05	St. Dev. 0.117 0.288 0.204	V 0.20 0.20 0.20	- V -0.08 0.09 0.00
Aspho	alt Co	ontent -	- Totals	1/1/200)3 to 1	2/31/200	3.								
								Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V
		7	Tons: 55	54,538			Best:	100.000	1.05000			0.00	0.074	0.20	-0.13
		Pro	cesses:	26		V	Vorst:	39.354	0.70269			0.35	0.288	0.20	0.09
			Tests:	563	Weig	ghted Av	erage:	89.123	1.00428			0.08	0.163	0.20	-0.04

VMA - Process Information

Criteria: Projects with Bid Dates from 1/1/2003 to 12/31/2003.

Processes with less than 3 tests not included.

_		•
Gra	ding:	D

Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proces: No.	s Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	v	StDev - V
14201	2	66,038	14201B	\$30.00	1	32,735	33	99.998	1.05500	13.60	13.60	0.00	0.318	0.60	-0.282
14207	2	68,335	243	\$28.95	1	68,938	69	99.924	1.05500	14.40	14.23	0.17	0.336	0.60	-0.264
14202	2	30,733	14202	\$32.00	1	13,455	14	99.597	1.04500	14.90	14.69	0.21	0.423	0.60	-0.177
14203	2	40,616	244	\$30.43	1	21,545	22	98.776	1.05000	14.10	13.48	0.62	0.272	0.60	-0.328
14205	2	67,200	237	\$32.13	1	30,659	31	98.595	1.05500	14.40	13.81	0.59	0.288	0.60	-0.312
14235	6	25,651	1470032	\$38.35	1	23,751	23	98.057	1.05000	16.40	16.02	0.38	0.413	0.60	-0.187
12021	6	23,310	147004	\$40.50	1	20,000	24	98.016	1.05000	14.00	13.78	0.22	0.498	0.60	-0.102
11210	6	20,258	147014	\$31.50	1	21,000	21	97.478	1.05000	14.20	14.21	0.01	0.565	0.60	-0.035
6033	6	11,055	147010-1	\$32.25	1	10,804	11	97.404	1.04500	14.20	13.87	0.33	0.484	0.60	-0.116
14244	6	52,404	147059-1	\$38.00	1	23,256	23	97.192	1.05000	14.50	14.07	0.43	0.418	0.60	-0.182
14201	2	66,038	14201T	\$33.70	1	44,062	45	96.823	1.05332	13.50	13.95	0.45	0.409	0.60	-0.191
13348	6	17,224	1470031	\$36.50	1	16,161	17	96.494	1.05000	16.40	16.21	0.19	0.565	0.60	-0.035
14244	6	52,404	147010-1	\$38.00	1	8,109	8	93.845	1.04000	13.70	14.29	0.59	0.419	0.60	-0.181
14203	2	40,616	249	\$34.15	1	20,124	21	93.594	1.03866	12.90	13.41	0.51	0.461	0.60	-0.139
14244	6	52,404	147010	\$38.00	1	8,912	9	90.661	1.03134	13.10	13.74	0.64	0.430	0.60	-0.170
14244	6	52,404	147059	\$38.00	1	3,855	4	90.038	1.03000	13.90	14.52	0.63	0.479	0.60	-0.121
14210	2	36,954	2410RAP	\$35.38	1	30,754	31	88.898	1.00466	14.20	13.47	0.73	0.390	0.60	-0.210
14202	2	30,733	14202T	\$36.00	1	16,961	17	87.783	1.00864	14.90	14.19	0.71	0.426	0.60	-0.174
14205	2	67,200	239	\$27.26	1	19,000	19	82.258	0.97169	14.00	13.10	0.90	0.323	0.60	-0.277
14205	2	67,200	240	\$27.26	1	5,750	6	76.678	0.98347	14.40	13.33	1.07	0.175	0.60	-0.425
Totals	Grad	ding: S	5					Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev - V
			Tons: 43	39,831			Best:	99.998	1.05500			0.00	0.175	0.60	-0.425
		Pro	ocesses:	20		٧	Vorst:	76.678	0.97169			1.07	0.565	0.60	-0.035
			Tests:	448	Weig	hted Ave	erage:	95.841	1.04129			0.40	0.392	0.60	-0.208

Gra	ading	: SX
~.,		

	Plan g. Quant	Mix . Design	Price	Proces No.	s Tons	Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	v	StDe - V
13865	3 62,608	78103	\$36.33	1	9,000	9	99.922	1.04000	14.40	13.87	0.53	0.283	0.60	-0.31
13865	62,608	76103B	\$36.30	2	26,264	26	97.585	1.05500	14.40	14.43	0.03	0.554	0.60	-0.04
14218	3 18,652	102303	\$34.65	1	18,421	19	81.891	0.96929	15.30	14.40	0.90	0.322	0.60	-0.27
14200 2	2 28,607	236	\$32.41	1	27,000	27	71.178	0.87796	16.80	15.77	1.03	0.296	0.60	-0.30
13865	62,608	76103B	\$36.30	1	25,000	25	70.215	0.87350	14.40	13.53	0.87	0.613	0.60	0.01
14210 2	2 36,954	210LEVA	\$32.75	1	6,000	6	47.136	0.77738	17.00	15.78	1.22	0.214	0.60	-0.38
14210 2	2 36,954	4210LEV	\$32.75	1	8,000	8	26.672	0.53111	16.80	15.46	1.34	0.213	0.60	-0.38
Totals Gi	J	Tons: 1	19,685 7		v	Best: Vorst:	Quality Level 99.922 26.672	Pay Factor 1.05500 0.53111			0.03	St. Dev. 0.213		- V -0.38
	P	rocesses: Tests:	7 120	Weid	V hted Ave	Vorst:	26.672 76.402	0.53111 0.91389			1.34 0.75	0.613		0.01 -0.18

Air Voids - Process Information

Criteria: Projects with Bid Dates from 1/1/2003 to 12/31/2003.

Processes with less than 3 tests not included.

Gra	ding:	S													
Sub.	Reg.	Plan Quant.	Mix Design	Price	Proce No		Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	٧	StDev -V
14244	6	52,404	147059	\$38.00	1	2,890	3	100.000	1.02500	3.00	3.50	0.50	0.436	0.60	-0.164
14235	6	25,651	1470032	\$38.35	1	23,751	23	99.398	1.05000	3.00	3.22	0.22	0.414	0.60	-0.186
14207	2	68,335	243	\$28.95	1	68,938	69	99.357	1.05500	3.10	3.08	0.03	0.450	0.60	-0.150
14205	2	67,200	237	\$32.13	1	30,659	31	97.485	1.05500	3.00	2.67	0.33	0.455	0.60	-0.145
14244	6	52,404	147010	\$38.00	1	8,912	9	96.982	1.04000	3.00	2.72	0.28	0.536	0.60	-0.064
14203	2	40,616	249	\$34.15	1	20,124	21	96.100	1.05000	3.40	3.19	0.21	0.563	0.60	-0.037
12021	6	23,310	147004	\$40.50	1	20,000	24	96.007	1.05000	3.00	3.23	0.23	0.558	0.60	-0.042
14201	2	66,038	14201T	\$33.70	1	44,062	45	95.516	1.04441	3.50	3.55	0.05	0.606	0.60	0.006
14244	6	52,404	147059-1	\$38.00	1	23,256	23	95.378	1.04828	3.20	2.81	0.39	0.491	0.60	-0.109
14202	2	30,733	14202	\$32.00	1	13,455	14	93.746	1.04113	3.50	3.40	0.10	0.669	0.60	0.069
11210	6	20,258	147014	\$31.50	1	21,000	21	93.117	1.03599	3.00	2.90	0.10	0.672	0.60	0.072
14202	2	30,733	14202T	\$36.00	1	16,961	17	92.460	1.03381	3.50	3.14	0.36	0.592	0.60	-0.008
14210	2	36,954	2410RAP	\$35.38	1	30,754	31	91.978	1.02500	3.50	3.09	0.41	0.565	0.60	-0.035
14203	2	40,616	244	\$30.43	1	21,545	22	91.674	1.02733	3.00	2.51	0.49	0.521	0.60	-0.079
14201	2	66,038	14201B	\$30.00	1	32,735	33	90.770	1.01602	3.40	2.94	0.46	0.557	0.60	-0.043
14205	2	67,200	240	\$27.26	1	5,750	6	90.418	1.03500	3.00	2.53	0.47	0.582	0.60	-0.018
6033	6	11,055	147010-1	\$32.25	1	10,804	11	89.953	1.02678	3.00	2.62	0.38	0.646	0.60	0.046
13348	6	17,224	1470031	\$36.50	1	16,161	17	87.134	1.00496	3.00	3.60	0.60	0.532	0.60	-0.068
14244	6	52,404	147010-1	\$38.00	1	8,109	8	79.188	0.98262	3.00	3.67	0.67	0.632	0.60	0.032
14205	2	67,200	239	\$27.26	1	19,000	19	64.211	0.83715	3.00	1.99	1.01	0.513	0.60	-0.087
Total	s Grad	ding: S	,					Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V
		7	ons: 438	3,866			Best:	100.000	1.05500			0.03	0.414	0.60	-0.186
		Pro	cesses:	20			Worst:	64.211	0.83715			1.01	0.672	0.60	0.072
			Tests:	447	Weig	ghted Av	erage:	93.321	1.03026			0.30	0.536	0.60	-0.064

Gra	ding:	SX													
Sub.	Reg.	Plan Quant.	Mix Design	Price	Proce No	ss Tons	Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	v	StDev -V
14218	3	18,652	102303	\$34.65	1	18,421	19	92.889	1.03537	3.50	3.01	0.49	0.492	0.60	-0.108
14200	2	28,607	236	\$32.41	1	27,000	27	89.665	1.01220	3.00	2.21	0.79	0.327	0.60	-0.273
13865	3	62,608	76103B	\$36.30	1	25,000	25	84.268	0.97800	3.50	3.07	0.43	0.736	0.60	0.136
13865	3	62,608	78103	\$36.33	1	9,000	9	81.166	0.98829	3.50	3.03	0.47	0.798	0.60	0.198
14210	2	36,954	210LEVA	\$32.75	1	6,000	6	77.658	0.98821	4.00	3.15	0.85	0.442	0.60	-0.158
13865	3	62,608	76103B	\$36.30	2	26,264	26	74.293	0.90385	3.50	3.73	0.23	1.036	0.60	0.436
14210	2	36,954	4210LEV	\$32.75	1	8,000	8	52.296	0.79639	3.00	1.85	1.15	0.825	0.60	0.225
Total	s Gra	ding: S	X					Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V
		7	Tons: 11	9,685			Best:	92.889	1.03537			0.23	0.327	0.60	-0.273
		Proc	cesses:	7		1	Worst:	52.296	0.79639			1.15	1.036	0.60	0.436
			Tests:	120	Wei	ghted Av	erage:	81.922	0.96742			0.55	0.668	0.60	0.068
Air V	oids –	Totals	1/1/2003	s to 12/3	1/2003	3.		* **							
								Quality Level	Pay Factor			Mean to TV	St. Dev.	v	StDev
		7	Γons: 55	8,551			Best:	100.000	1.05500			0.03	0.327	0.60	-0.273
		Pro	cesses:	27		,	Worst:	52.296	0.79639			1.15	1.036	0.60	0.436
			Tests:	567	Wei	ghted Av	verage:	90.878	1.01680			0.35	0.564	0.60	-0.036

Mat Density - Process Information, Voids Acceptance

Criteria: Projects with Bid Dates from 1/1/2003 to 12/31/2003.

Processes with less than 3 tests not included. Compaction Test Sections not included.

Gradi	ng: .	S													
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proc No		Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	V	StDev - V
13348	6	17,224	1470031	\$36.50	1	16,161	33	100.000	1.05500	94.000	94.300	0.300	0.439	1.100	-0.66
14235	6	25,651	1470032	\$38.35	1	23,751	54	100.000	1.05500	94.000	94.067	0.067	0.447	1.100	-0.653
11210	6	20,258	147014	\$31.50	1	21,000	42	99.036	1.05500	94.000	93.881	0.119	0.791	1.100	-0.309
14210	2	36,954	410RAP	\$35.38	1	30,754	62	97.789	1.05500	94.000	94.010	0.010	0.889	1.100	-0.21
14244	6	52,404	47010-1	\$38.00	1	8,109	16	97.550	1.05000	94.000	93.112	0.888	0.594	1.100	-0.506
14205	2	67,200	240	\$27.26	1	5,750	12	96.926	1.04500	94.000	93.317	0.683	0.748	1.100	-0.352
14205	2	67,200	237	\$32.13	1	30,659	62	96.673	1.05070	94.000	93.710	0.290	0.907	1.100	-0.193
14201	2	66,038	14201B	\$30.00	1	32,235	65	95.389	1.04067	94.000	93.648	0.352	0.951	1.100	-0.149
14202	2	30,733	14202T	\$36.00	1	16,961	34	95.388	1.04573	94.000	94.556	0.556	0.866	1.100	-0.234
14205	2	67,200	239	\$27.26	1	19,000	38	95.216	1.04340	94.000	94.382	0.382	0.956	1.100	-0.144
6033	6	11,055	47010-1	\$32.25	1	10,304	24	94.694	1.04428	94.000	94.167	0.167	1.052	1.100	-0.048
14203	2	40,616	244	\$30.43	1	21,545	44	93.560	1.03110	94.000	93.205	0.795	0.799	1.100	-0.301
14244	6	52,404	147010	\$38.00	1	8,912	18	93.522	1.03899	94.000	93.639	0.361	1.058	1.100	-0.042
12021	6	23,310	147004	\$40.50	1	20,000	48	92.057	1.02163	94.000	93.600	0.400	1.082	1.100	-0.018
14201	2	66,038	14201T	\$33.70	1	43,062	87	91.140	1.00526	94.000	93.395	0.605	1.015	1.100	-0.085
14244	6	52,404	47059-1	\$38.00	1	23,256	49	90.492	1.00794	94.000	93.996	0.004	1.210	1.100	0.110
14202	2	30,733	14202	\$32.00	1	13,455	27	89.336	1.01008	94.000	94.015	0.015	1.259	1.100	0.159
14244	6	52,404	147059	\$38.00	1	3,855	8	88.780	1.02620	94.000	93.313	0.687	1.096	1.100	-0.004
14207	2	68,335	243	\$28.95	1	42,438	85	87.838	0.97872	94.000	92.858	1.142	0.736	1.100	-0.364
14203	2	40,616	249	\$34.15	1	20,124	41	85.268	0.97271	94.000	92.812	1.188	0.775	1,100	-0.325
Totals	- Gi	ading	: S					Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V
		Tons	s: 411,	331		E	Best:	100.000	1.05500			0.004	0.439	1.100	-0.661
		Process		20		W	orst:	85.268	0.97271			1.188	1.259	1.100	0.159
		ıe	sis: 6	49 V	Veigh	ted Aver	age:	93.782	1.02741			0.459	0.878	1.100	-0.222

Mat Density

Gradi	ng: .	SX													
Subacct.	Reg.	Plan Quant.	Mix Design	Price	Proce No		Tests	Quality Level	Pay Factor	τv	Mean	Mean to TV	St. Dev.	V	StDev - V
13865	3	62,608	78103	\$36.33	1	8,500	18	97.900	1.05000	94.000	93.772	0.228	0.892	1.100	-0.208
14200	2	28,607	236	\$32.41	1	27,000	54	95.771	1.04500	94.000	93.415	0.585	0.825	1.100	-0.27
13865	3	62,608	76103B	\$36.30	1	50,764	102	91.604	1.00790	94.000	93.542	0.458	1.069	1.100	~0.03
14218	3	18,652	102303	\$34.65	1	17,493	37	89.653	1.00611	94.000	93.338	0.662	1.046	1.100	-0.054
Totals	- Gi	rading:	: SX					Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V
		Tons	s: 103,	757		B	Best:	97.900	1.05000			0.228	0.825	1.100	-0.27
		Process	ses:	4		Wo	orst:	89.653	1.00611			0.662	1.069	1.100	-0.03
		Te	sts: 2	11 V	Veight	ted Avera	age:	92.875	1.02070			0.507	0.987	1.100	-0.113
Mat D	ensi	ity – To	otals 1	/1/2003	to 12	2/31/200	3.				•				
				,				Quality Level	Pay Factor			Mean to TV	St. Dev.	٧	StDev - V
		Tons	s: 515,	880		Е	Best:	100.000	1.05500			0.004	0.439	1.100	-0.66 ²
		Process	ses:	24		Wo	orst:	85.268	0.97271			1.188	1.259	1.100	0.159
		Те	e sts: 1,0		Voich	ted Avera	2001	93.600	1.02606			0.468	0.900	1.100	-0.200

Appendix F

	Joint Density	Information	2000	through	/2003
--	---------------	-------------	------	---------	-------

Report 12 Joint Density Process InformationF -	- ′	1
--	-----	---

Joint Density - Process Information by Grading, VA

Criteria: Projects with Bid Dates from 1/1/2000 to 12/31/2003.

Processes with less than 3 tests not included.

Gradii	ng S												
Sub.	Reg.	Price	Proc. No	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	Std Dev	V	St Dev. - V
13480	2	\$30.27	1	5,964	3	100.000	1.02500	92.00	91.270	0.730	2.511	1.60	0.911
14201	2	\$30.00	1	32,735	19	99.619	1.05000	92.00	90.540	1.460	1.038	1.60	-0.562
14202	2	\$36.00	2	16,161	7	97.611	1.03500	92.00	91.130	0.870	1.817	1.60	0.217
14203	2	\$34.15	2	20,124	10	97.379	1.04500	92.00	90.970	1.030	1.665	1.60	0.065
14203	2	\$30.43	1	21,545	10	96.612	1.04500	92.00	90.670	1.330	1.568	1.60	-0.032
14205	2	\$32.13	2	30,659	28	96.270	1.05279	92.00	91.030	0.970	1.724	1.60	0.124
14207	2	\$28.95	1	68,938	28	92.895	1.03221	92.00	89.590	2.410	1.097	1.60	-0.503
14201	2	\$33.70	2	44,062	19	89.554	1.01664	92.00	89.690	2.310	1.355	1.60	-0.245
14202	2	\$32.00	1	13,115	5	86.776	1.03000	92.00	94.180	2.180	1.641	1.60	0.041
12021	6	\$40.50	1	20,000	12	85.672	1.00503	92.00	91.270	0.730	2.709	1.60	1.109
14244	6	\$38.00	2	27,111	8	81.207	0.99279	92.00	89.340	2.660	1.486	1.60	-0.114
14205	2	\$27.26	1	24,750	22	78.360	0.94084	92.00	89.740	2.260	2.194	1.60	0.594
6033	6	\$32.25	1	10,804	13	64.982	0.86802	92.00	88.880	3.120	2.247	1.60	0.647
14210	2	\$35.38	1	30,754	16	54.135	0.75933	92.00	88.190	3.810	1.770	1.60	0.170
14244	6	\$38.00	1	17,021	8	45.512	0.73450	92.00	87.790	4.210	1.791	1.60	0.191
13480	2	\$35.82	2	2,389	3	44.379	0.84528	92.00	87.770	4.230	1.150	1.60	-0.450

Totals Grading: S	
-------------------	--

Processes	Tons	Tests		Pay Factor	TV	Mean	Mean to TV	St. Dev.	v	StDev - V
16	386,132	211	85.509	0.98425	92.00	90.032	2.116	1.595	1.60	-0.005

Weighted Average:

Gradin	ig S	X											
Sub.	Reg.	Price	Proc. No	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	Std Dev	V	St Dev. - V
13865	3	\$37.38	1	60,264	22	99.133	1.05000	92.00	91.890	0.110	1.633	1.60	0.033
14200	2	\$32.41	1	23,604	18	89.075	1.01484	92.00	90.150	1.850	1.759	1.60	0.159
14218	3	\$35.54	. 1	18,421	16	81.597	0.97371	92.00	89.620	2.380	1.789	1.60	0.189

Totals Grading: SX Weighted Average:

Processes	Tons	Tests	Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	٧	StDev - V
3	102,289	56	93.654	1.02815	92.00	91.080	0.920	1.690	1.60	0.090

Joint Densi	ty Totals	1/1/2000	1/1/2000 to 12/31/2003								
			Quality Level	Pay Factor	TV	Mean	Mean to TV	St. Dev.	٧	StDev - V	
Processes:	19	Best:	100.000	1.05279	92.00	94.180	0.110	1.038	1.60	-0.562	
Tests:	267	Worst:	44.379	0.73450	92.00	87.770	4.230	2.709	1.60	1.109	
Total Tons:	488,421	Weighted Average:	87.215	0.99344	92.00	90.251	1.866	1.615	1.60	0.015	

Appendix G

Revision to Sections 105, & 106, Quality of HBP (Voids Acceptance)

DE: #010N 0E

REVISION OF SECTIONS 105 AND 106 QUALITY OF HOT BITUMINOUS PAVEMENT (VOIDS ACCEPTANCE)

Sections 105 and 106 of the Standard Specifications are hereby revised for this project as follows:

Subsection 105.03 shall include the following:

Conformity to the Contract of all Hot Bituminous Pavement, Item 403, except Hot Bituminous Pavement (Patching) and temporary pavement will be determined by tests and evaluations of elements that include asphalt content, voids in the mineral aggregate, air voids in-place density, and joint density in accordance with the following:

All work performed and all materials furnished shall conform to the lines, grades, cross sections, dimensions, and material requirements, including tolerances, shown in the Contract.

For those items of work where working tolerances are not specified, the Contractor shall perform the work in a manner consistent with reasonable and customary manufacturing and construction practices.

When the Engineer finds the materials or work furnished, work performed, or the finished product are not in conformity with the Contract and has resulted in an inferior or unsatisfactory product, the work or material shall be removed and replaced or otherwise corrected at the expense of the Contractor.

Materials will be sampled randomly and tested by the Department in accordance with Section 106 and with the applicable procedures contained in the Department's Field Materials Manual. The approximate maximum quantity represented by each sample will be as set forth in Section 106. Additional samples may be selected and tested at the Engineer's discretion.

A process will consist of either a test value or a series of test values resulting from related tests of an element of the Contractor's work and materials. An element is a material and/or workmanship property that can be tested and evaluated for quality level by the Department approved sampling, testing, and analytical procedures. All materials produced will be assigned to a process of each element being tested and evaluated. A change in process is defined as a change that affects the element involved. A process for any element normally will include all produced materials associated with that element prior to a change in the job mix formula (CDOT Form 43) with the exception of the process for joint density element. For joint density, a new process will be established for each new layer of pavement or for changes in joint construction. Density measurements taken within each compaction test section will be a separate process. The Engineer may separate a process in order to accommodate small quantities or unusual variations.

Evaluation of materials for pay factors (PF) will be done using only the Department's acceptance test results. Each process will have a PF computed in accordance with the requirements of this Section. Test results determined to have sampling or testing errors will not be used.

Except for density measurements taken within a compaction test section, any test result for the asphalt content, in-place density and/or joint density element greater than the distance 2 x V (see Table 105-2) outside the tolerance limits will be designated as a separate process and the quantity it represents will be evaluated in accordance with subsection 105.03(a). An element pay factor less than zero shall be zero. The calculated PF will be used to determine the Incentive/Disincentive Payment (I/DP) for the process.

Any test result for the air voids or VMA elements greater than the distance 2 x V (see Table 105-2) outside the tolerance limits will be designated as a separate process and the quantity it represents shall be removed and replaced with specification material at the Contractor's expense.

DEVISION OF SEC

REVISION OF SECTIONS 105 AND 106 QUALITY OF HOT BITUMINOUS PAVEMENT (VOIDS ACCEPTANCE)

In the case of in-place density or joint density, the Contractor will be allowed to core the exact location (or immediately adjacent location for joint density) of a test result more than 2 x V outside the tolerance limit. The core must be taken and furnished to the Engineer within eight hours after notification by the Engineer of the test result. The result of this core will be used in lieu of the previous test result. Cores not taken within eight hours after notification by the Engineer will not be used in lieu of the test result. All costs associated with coring will be at the Contractor's expense.

(a) Representing Small Quantities. When it is necessary to represent a process by only one or two test results, PF will be the average of PFs resulting from the following:

If the test result is within the tolerance limits then PF = 1.00. If the test result is above the maximum specified limit, then

$$PF = 1.00 - [0.25(T_0 - T_U)/V]$$

If the test result is below the minimum specified limit, then

$$PF = 1.00 - [0.25(T_L - T_0)/V]$$

Where: PF = pay factor.

V = V factor from Table 105-2. $T_0 =$ the individual test result. $T_U =$ upper specification limit.

 T_1 = lower specification limit.

If the pay factor of any of the above calculations is less than 0.75 for any element, the acceptance of the work will be evaluated according to subsection 105.03(f).

- (b) Determining Quality Level. Each process with three or more test results will be evaluated for a quality level (QL) in accordance with Colorado Procedure 71.
- (c) Joint Density Element. Joint density will be tested according to 401.17.
- (d) Process Pay Factor. Using the calculated QL for the process, compute the PF as follows: The final number of random samples (Pn) in each process will determine the final pay factor. As test values are accumulated for each process, Pn will change accordingly. When the process has been completed, the number of random samples it contains will determine the computation of PF, based on Table 105-3 and formula (1) below. When Pn is from 3 to 9, or greater than 200, PF will be computed using the formulas designated in Table 105-3. Where Pn is equal to or greater than 10 and less than 201, PF will be computed by formula (1):

(1)
$$PF = \frac{(PF_1 + PF_2)}{2} + \left[\frac{(PF_2 + PF_3)}{2} - \frac{(PF_1 + PF_2)}{2}\right] \cdot \frac{(Pn_2 - Pn_X)}{(Pn_2 - Pn_3)}$$

Where, when referring to Table 105-3:

PF₁= PF determined at the next lowest Pn formula using process QL

PF₂ = PF determined using the Pn formula shown for the process QL

PF₃= PF determined at the next highest Pn formula using process QL

Pn₂= the lowest Pn in the spread of values listed for the process Pn formula

Pn₃= the lowest Pn in the spread of values listed for the next highest Pn formula

Pn_X= the actual number of test values in the process

When evaluating the item of Furnish Hot Bituminous Pavement, the PF for the element of In-Place Density shall be 1.0.

Regardless of QL, the maximum PF in relation to Pn is limited in accordance with Table 105-3.

As test results become available, they will be used to calculate QL and PF numbers for each process. The process I/DP's will then be calculated and accumulated for each element and for the item. The test results and the accumulated calculations will be made available to the Contractor upon request.

Numbers from the calculations will be carried to significant figures and rounded according to AASHTO Standard Recommended Practice R-11, Rounding Method.

- (e) Evaluation of Work. When the PF of a process is 0.75 or greater, the finished quantity of work represented by the process will be accepted at the appropriate pay factor. If the PF for the air voids or VMA elements within any process is less than 0.75, the Contractor shall remove and replace the material with specification material at the Contractor's expense. If PF for the asphalt content or in-place density elements within any process is less than 0.75, the Engineer may:
 - 1. Require complete removal and replacement with specification material at the Contractor's expense, or;
 - 2. Where the finished product is found to be capable of performing the intended purpose and the value of the finished product is not affected, permit the Contractor to leave the material in place. If the material is permitted to remain in place, the PF for the process shall not be greater than 0.75. The Region Materials Engineer (RME) will be consulted prior to determining the material will be allowed to remain in place. The RME will also be consulted to assist in determining an appropriate pay factor.

When condition red, as described in Section 106, exists for any element, resolution and correction will be in accordance with Section 106. Material that the Engineer determines is defective may be isolated and rejected without regard to sampling sequence or location within a process.

Table 105-2
"W" and "V" Factors For Various Elements

ELEMENT	V FACTOR	W FACTOR
Asphalt Content	0.20	10
Voids in the Mineral Aggregate	0.60	10
Air Voids	0.60	30
In-place Density	1.10	35
Joint Density	1.60	15

4

REVISION OF SECTIONS 105 AND 106 QUALITY OF HOT BITUMINOUS PAVEMENT (VOIDS ACCEPTANCE)

TABLE 105-3
Formulas For Calculating PF Based on Pn

Pn	When Pn as shown at left is 3 to 9, or greater than 200, use designated formula below to calculate Pay Factor, PF =, when Pn is 10 to 200, use formula (1) above:	Maximum PF
3	0.31177 + 1.57878 (QL/100) - 0.84862 (QL/100) ²	1.025
4	0.27890 + 1.51471 (QL/100) - 0.73553 (QL/100) ²	1.030
5	0.25529 + 1.48268 (QL/100) - 0.67759 (QL/100) ²	1.030
6	0.19468 + 1.56729 (QL/100) - 0.70239 (QL/100) ²	1.035
7	0.16709 + 1.58245 (QL/100) - 0.68705 (QL/100) ²	1.035
8	0.16394 + 1.55070 (QL/100) - 0.65270 (QL/100) ²	1.040
9	0.11412 + 1.63532 (QL/100) - 0.68786 (QL/100) ²	1.040
10 to 11	0.15344 + 1.50104 (QL/100) - 0.58896 (QL/100) ²	1.045
12 to 14	0.07278 + 1.64285 (QL/100) - 0.65033 (QL/100) ²	1.045
15 to 18	0.07826 + 1.55649 (QL/100) - 0.56616 (QL/100) ²	1.050
19 to 25	0.09907 + 1.43088 (QL/100) - 0.45550 (QL/100) ²	1.050
26 to 37	0.07373 + 1.41851 (QL/100) - 0.41777 (QL/100) ²	1.055
38 to 69	0.10586 + 1.26473 (QL/100) - 0.29660 (QL/100) ²	1.055
70 to 200	0.21611 + 0.86111 (QL/100)	1.060
<u>≥</u> 201	0.15221 + 0.92171 (QL/100)	1.060

(f) Process I/DP Computation.

I/DP = (PF - 1)(QR)(UP)(W/100)

Where:

I/DP= Incentive/Disincentive Payment

PF = Pay Factor

QR = Quantity in Tons of HBP Represented by the Process

UP = Unit Bid Price of Asphalt Mix W = Element Factor from Table 105-2

When AC is paid for separately UP shall be:

$UP = [(Ton_{HBP})(UP_{HBP}) + (Ton_{AC})(UP_{AC})]/Ton_{HBP}$

Where:

 $Ton_{HBP} = Tons of Asphalt Mix$

UP_{HBP} = Unit Bid Price of Asphalt Mix Ton_{AC} = Tons of Asphalt Cement

UP_{AC} = Unit Bid Price of Asphalt Cement

For the Joint Density element:

 $UP = UP_{HBP}$

Where: UPHBP is as defined above.

When AC is paid for separately UP shall be:

$$UP = [(BTon_{HBP})(BUP_{HBP}) + (BTon_{AC})(BUP_{AC})] / BTon_{HBP}$$

Where: BTon_{HBP} = Bid Tons of Asphalt Mix

BUP_{HBP} = Unit Bid Price of Asphalt Mix BTon_{AC} = Bid Tons of Asphalt Cement BUP_{AC} = Unit Bid Price of Asphalt Cement

- (g) Element I/DP. The I/DP for an element shall be computed by accumulating the process I/DP for that element.
- (h) I/DP for a Mix Design. The I/DP for a mix design shall be computed by accumulating the process I/DP's for the asphalt content, voids in the mineral aggregate, air voids, and in-place densityelements for that mix design. The accumulated quantities of materials for each element must be the same at the end of I/DP calculations for a mix design.
- (i) *Project I/DP*. The I/DP for the project shall be computed by accumulating the mix design I/DP's and the joint density I/DP's. The accumulated quantities of materials for each element must be the same at the end of I/DP calculations for the project.

Subsection 106.03 shall include the following:

All Hot Bituminous Pavement, Item 403, except Hot Bituminous Pavement (Patching) and temporary pavement shall be tested in accordance with the following program of process control testing and acceptance testing:

- (a) Process Control Testing. The Contractor shall be responsible for process control testing on all elements listed in Table 106-1. Process control testing shall be performed at the expense of the Contractor. The Contractor shall develop a quality control plan (QCP) in accordance with the following:
 - Quality Control Plan. For each element listed in Table 106-1, the QCP must provide adequate details to
 ensure the Contractor will perform process control. The Contractor shall submit the QCP to the Engineer
 at the preconstruction conference. The Contractor shall not start any work on the project until the
 Engineer has approved the QCP in writing.
 - A. Frequency of Tests or Measurements. The QCP shall indicate a random sampling frequency, which shall not be less than that shown in Table 106-1. The process control tests shall be independent of acceptance tests.
 - B. Test Result Chart. Each process control test result, the appropriate tonnage and the tolerance limits shall be plotted. For in-place density tests, only results after final compaction shall be shown. The chart shall be posted daily at a location convenient for viewing by the Engineer.
 - C. Quality Level Chart. The Quality Level (QL) for each element used to calculate incentive/disincentive in Table 106-1 and each required sieve size shall be plotted. The QL will be calculated in accordance with the procedure in CP 71 for Determining Quality Level (QL). The QL will be calculated on tests 1

through 3, then tests 1 through 4, then tests 1 through 5, then thereafter the last five consecutive test results. The tonnage of material represented by the last test result shall correspond to the QL. For in-place density tests, only results after final compaction shall be shown. The chart shall be posted daily at a location convenient for viewing by the Engineer.

- 2. Elements Not Conforming to Process Control. The QL of each discrete group of five test results, beginning with the first group of five test results, shall be a standard for evaluating material not conforming to process control. When the group QL is below 65, the process shall be considered as not conforming to the QCP. In this case, the Contractor shall take immediate action to bring the process back into control. Except where the cause of the problem is readily apparent and corrected without delay, production shall be suspended until the source of the problem is determined and corrected. A written explanation of actions taken to correct control problems shall accompany the test data and be submitted to the Engineer on the day the actions are taken.
- 3. Point of Sampling. The material for process control testing shall be sampled by the Contractor using approved procedures. Acceptable procedures are Colorado Procedures, AASHTO and ASTM. The order of precedence is Colorado Procedures, AASHTO procedures and then ASTM procedures. The location where material samples will be taken shall be indicated in the QCP.
- 4. Testing Standards. The QCP shall indicate which testing standards will be followed. Acceptable standards are Colorado Procedures, AASHTO and ASTM. The order of precedence is Colorado Procedures, AASHTO procedures and then ASTM procedures.
- 5. Testing Supervisor Qualifications. The person responsible for the process control sampling and testing shall be identified in the QCP and be qualified according to the requirements of CP 10.
- 6. Technician Qualifications. Technicians taking samples and performing tests must be qualified according to the requirements of CP 10.
- 7. Testing Equipment. All of the testing equipment used to conduct process control testing shall conform to the standards specified in the test procedures and be in good working order. Nuclear testing devices used for process control testing of in-place density do not have to be calibrated on the Department's calibration blocks.
- 8. Reporting and Record Keeping. The Contractor shall report the results of the process control tests to the Engineer in writing at least once per day. The Contractor shall make provisions such that the Engineer can inspect process control work in progress, including sampling, testing, plants, and the Contractor's testing facilities at any time.
- (b) Acceptance Testing. Acceptance testing is the responsibility of the Department and shall not be addressed in the QCP. The Department will determine the locations where samples or measurements are to be taken and as designated in Section 403. The maximum quantity of material represented by each test result and the minimum number of test results will be in accordance with Table 106-1. The location or time of sampling will be based on a stratified random procedure. Acceptance sampling and testing procedures will be in accordance with the Schedule for Minimum Materials Sampling, Testing and Inspection in the Department's Field Materials Manual. Samples for project acceptance testing shall be taken by the Contractor in accordance with the designated method. The samples shall be taken in the presence of the Engineer. Where appropriate, the Contractor shall reduce each sample to the size designated by the Engineer. The Contractor may retain a split of each sample which cannot be included as part of the QCP.

All materials being used are subject to inspection and testing at any time prior to, during, or after incorporation into work. Acceptance tests will be made by and at the expense of the Department, except when otherwise provided.

7

REVISION OF SECTIONS 105 AND 106 QUALITY OF HOT BITUMINOUS PAVEMENT (VOIDS ACCEPTANCE)

(c) Check Testing Program (CTP). Prior to or in conjunction with placing the first 500 metric tons (500 tons) of asphalt pavement, under the direction of the Engineer, a CTP will be conducted between acceptance testing and process control testing programs. The CTP will consist of testing for asphalt content, voids in the mineral aggregate, air voids, in-place density, and joint density in accordance with CP 13 of the Department's Field Materials Manual. The CTP will be continued until the acceptance and process control test results are within the acceptable limits shown in Table 13-1 of CP 13. For joint density, the initial check test will be a comparison of the seven cores tested by CDOT and the seven cores tested by the Contractor. These are the cores from the compaction test section used for nuclear gauge calibration and test section payment.

	Column 1	Column 2	Column 3
Element	σ (Two operator	δ (Max. difference	δ' (Acceptable Check
	adjacent samples)	adjacent samples)	Test Limit)
Joint Density	1.10%	2.20%	0.83%

During production a split sample check will be conducted at the frequency shown in Table 106-1. The split samples will be from an acceptance sample obtained in accordance with subsection 106.03(b). Except for joint density, the split samples will be from an acceptance sample obtained in accordance with subsection 106.03(b). The acceptance test result will be compared to the process control test result obtained by the Contractor using the acceptable limits shown in Table 13-1 of CP 13. For joint density, the comparison sample material for testing by the Contractor will be obtained by taking a second core adjacent to the joint density acceptance core. The acceptance test result will be compared to the process control test result obtained by the Contractor using the acceptable limits shown in the above table and following the check testing procedure given in CP 13.

If production has been suspended and then resumed, the Engineer may order a CTP between process control and acceptance testing persons to assure the test results are within the acceptable limits shown in Table 13-1 of CP 13. Check test results shall not be included in process control testing. The Region Materials Engineer shall be called upon to resolve differences if a CTP shows unresolved differences beyond the values shown in Table 13-1 of CP 13.

(d) Stability Verification Testing. After the mix design has been approved and production commences, the Department will perform a minimum of three stability verification tests to verify that the field produced Hot Bituminous Pavement conforms to the approved mix design:

The test frequency shall be one per day unless altered by the Engineer.

The test results will be evaluated and the Contractor shall make adjustments if required in accordance with the following:

- 1. The minimum value for stability will be the minimum specified in Table 403-1 of the specifications. There will be no tolerance limit.
- 2. Quality Level. Calculate a QL for stability.

If the QL for stability is less than 65, then production shall be halted and the Contractor shall submit a written proposal for a mix design revision to the Engineer. The Engineer shall give written approval to the proposed mix design revision before production continues.

After a new or revised mix design is approved, three additional stability tests will be performed on asphalt produced with the new or revised mix design. The test frequency shall be one per day unless altered by the Engineer.

If the stability QL is less than 65, then production shall be halted until a new mix design has been completed and approved using plant produced material or the Contractor shall submit a written proposal

for a mix design revision to the Engineer. The Engineer shall give written approval to the proposed mix design revision before production continues.

- 3. New or Revised Mix Design. Whenever a new or revised mix design is used and production resumes, three additional stability field verification tests shall be performed and the test results evaluated in accordance with the above requirements. The test frequency shall be one per day unless altered by the Engineer.
- 4. Field Verification Process Complete. When the field verification process described above is complete and production continues, the sample frequency will revert back to 1/10,000 tons (1/10 000 metric tons).
- (e) Target Values for VMA. After the mix design has been approved and production commences, the first three acceptance tests for Voids in Mineral Aggregate (VMA) will be analyzed to verify and establish a target value for VMA. The Contractor shall make adjustments if required in accordance with the following: The target value for VMA will be the average of the first three volumetric field verification test results on project produced hot bituminous pavement or the target value specified in Table 403-1 and Table 403-2 of the specifications, whichever is higher. The target value for VMA will be set no lower than 1.0% below the VMA target on original Form #43.

Whenever a new or revised mix design is used and production resumes, the next three acceptance tests will be evaluated and a target value for VMA will be established in accordance with the above requirements.

- (f) Independent Assurance Testing. Independent assurance testing for Asphalt Content and In-Place Density will be in accordance with the Department's Field Materials Manual. Independent assurance testing for Voids in the Mineral Aggregate and Air Voids will be performed by the Department's Flexible Pavement laboratory on samples sent from the field at a frequency of one per 10 000 metric tons (10,000 tons).
- (g) Reference Conditions. Three reference conditions can exist determined by the Moving Quality Level (MQL). The MQL will be calculated in accordance with the procedure in CP 71 for Determining Quality Level (QL). The MQL will be calculated using only acceptance tests. The MQL will be calculated on tests 1 through 3, then tests 1 through 4, then tests 1 through 5, then thereafter on the last five consecutive test results. The MQL will not be used to determine pay factors. The three reference conditions and actions that will be taken are described as follows:
 - 1. Condition green will exist for an element when an MQL of 90 or greater is reached, or maintained, and the past five consecutive test results are within the specification limits.
 - 2. Condition yellow will exist for all elements at the beginning of production or when a new process is established because of changes in materials or the job-mix formula, following an extended suspension of work, or when the MQL is less than 90 and equal to or greater than 65. Once an element is at condition green, if the MQL falls below 90 or a test result falls outside the specification limits, the condition will revert to yellow or red as appropriate.
 - 3. Condition red will exist for any element when the MQL is less than 65. The Contractor shall be notified immediately in writing and the process control sampling and testing frequency increased to a minimum rate of 1/250 metric tons (1/250 tons) for that element. The process control sampling and testing frequency shall remain at 1/250 metric tons (1/250 tons) until the process control QL reaches or exceeds 78. If the QL for the next five process control tests is below 65, production will be suspended.

After condition red exists, a new MQL will be started. Acceptance testing will stay at the frequency shown in Table 106-1. After three acceptance tests, if the MQL is less than 65, production will be suspended. Production will remain suspended until the source of the problem is identified and corrected. Each time production is suspended; corrective actions shall be proposed in writing by the Contractor and approved in writing by the Engineer before production may resume.

Upon resuming production, the process control sampling and testing frequency for the elements causing the condition red shall remain at 1/250 metric tons (1/250 tons). If the QL for the next five process control tests is below 65, production will be suspended again.

- (h) Correction Factor. In determining the air voids and VMA in the materials compacted with the SuperPave Gyratory Compactor (SGC), the following correction for bulk specific gravity shall be performed during the CTP:
 - The difference in the average value of bulk specific gravity between the process control testing SGC and acceptance testing SGC will be determined and used as a correction factor for the process control bulk specific gravity.
 - This correction factor shall be used to correlate the process control SGC to the acceptance testing SGC for comparison of air voids and VMA during the CTP and full project production. Values in Table 13-1 of CP 13 apply to SGC comparison after correction factor has been applied.
 - 3. This correction factor shall be applied in correlating the SGC's air voids and VMA test results from process control and acceptance testing to produce comparable data. Any changes in SGC equipment or in the mix design properties, specifically the number of gyrations, asphalt binder grade, aggregate gradation, combination of aggregates, and aggregate sources shall require a new correction factor to be determined under a CTP.

Example: If for the five CTP tests on split samples the process control SGC averages bulk specific gravity of 2.391 and the acceptance SGC averages 2.382, the correction factor would be -0.009 (2.382-2.391) to the process control bulk specific gravities. Each of the five process control CTP bulks would be decreased by 0.009 before CTP result comparison of voids and VMA is made. If the volumetric results satisfy Table 13-1 of CP 13, use corrected bulks to calculate voids and VMA for process control testing program.

If process control and acceptance SGCs are not from the same equipment manufacturer, project-specific material shall be used to perform the CTP and generate the correction factor.

TABLE 106-1
SCHEDULE FOR MINIMUM SAMPLING AND TESTING

ELEMENT	PROCESS CONTROL	ACCEPTANCE ³	CHECK (CTP)
CP-42 Determining Asphalt Content of Hot Bituminous Mixtures	1/500 metric tons (1/500 tons)	1/1000 metric tons ¹ (1/1000 tons)	1/10,000 metric tons (1/10,000 tons)
CPL-5102, CPL-5103 & CPL-5115 Voids in the Mineral Aggregate	1/1000 metric tons (1/1000 tons)	1/1000 metric tons ¹ (1/1000 tons)	1/10,000 metric tons (1/10,000 tons)
CPL-5102, CPL-5103 & CPL-5115 Air Voids	1/1000 metric tons (1/1000 tons)	1/1000 metric tons ¹ (1/1000 tons)	1/10,000 metric tons (1/10,000 tons)
CPL-5106 & CPL-5115 Hveem Stability	1/10 000 metric tons (1/10,000 tons)	1/10 000 metric tons ² (1/10,000 tons)	Not applicable.
CPL-5109 Resistance to Moisture Damage (Lottman)	1/10 000 metric tons (1/10,000 tons)	According to subsection 401.02	Not applicable.
CP-31 Gradation	1/10 000 metric tons (1/10,000 tons)	1/10 000 metric tons ² (1/10,000 tons)	Not applicable.
CP-81 Determining Percent Relative Compaction of Bituminous Pavement 1/500 metric tons	(1/500 tons) 1/500 metric tons ¹	(1/500 tons) 1/500 metric tons	(1/5000 tons)
Joint Density	1 core/2500 linear feet of joint	1 core/5000 linear feet of joint	1 core/50,000 linear feet of joint

Aggregate Percent Moisture (3)	1/2000 metric tons (1/2000 T) or 1/Day if less than 2000 metric tons (2000 T)	1/2000 metric tons (1/2000 T)	Not applicable
Percent Lime (3) (4)	1/Day	Not applicable	Not applicable

Notes for Table 106-1:

- (1) The minimum number of acceptance tests will be at least 5 asphalt content, 5 voids in the mineral aggregate, 5 air voids, 10-in-place density and 5 joint densities for all projects.
- (2) For information only. These elements are not used to calculate pay factors.
- (3) When unscheduled job mix formula changes are made (CDOT 43) acceptance of the elements, except for in-place density, will be based on the actual number of samples that have been selected up to that time, even if the number is below the minimum listed in Table 106-1. At the Engineer's discretion, additional random in-place density test may be taken in order to meet scheduled minimums, provided the applicable pavement layer is available for testing under safe conditions. Beginning with the new job mix formula, the quantity it will represent shall be estimated. A revised schedule of acceptance tests will be based on that estimate.
- (4) Not to be used for incentive/disincentive pay. Test according to CP-60B and report results from Form #106 or Form #565 on Form #6.
- (5) Verified per Contractor's QC Plan.

Appendix H

Colorado Procedure 71 Determining Quality Level

			·

Colorado Procedure 71-01

Standard Practice for

Determining Quality Level (Percent Within Tolerance Limits)

1. SCOPE

- 1.1 Use this procedure with Quality Assurance type specifications where Pay Factors or acceptance decisions are based on Quality Level (QL), defined as percent within specification (tolerance) limits. QL is a measure of quality of a lot or process.
- 1.2 QL represents the percentage of the population (lot or process) that falls above a single lower limit, below a single upper limit, or between the upper and lower limits of double-limit specifications.
- 1.3 For this procedure to be meaningful, select all samples by random or stratified random procedures. Perform all testing and measuring strictly in accordance with standard acceptable practices. When used for contractual purposes, do all sampling and testing in accordance with the applicable specifications.
- 1.4 Manual, computer assisted, and mathematical procedures are described. Where contractual pay factors are based on QL, use only the computer assisted procedure.

2. SUMMARY OF METHOD

- 2.1 The method involves calculating statistical parameters from three or more representative measurements, test results, or values for each specified element in a lot or sample. The arithmetic average (mean) value of the sample is calculated. As a measure of variability, the sample Standard Deviation is calculated. Using these results, the distance from the sample mean to each limit is divided by the standard deviation, which yields the Quality Index.
- 2.2 The incomplete beta function ratio, using sample sizes and quality indices as

variables, is used in the computer version to calculate areas under the beta distribution. With variables typical for QL determinations, the beta distribution (Figure 71-1) is similar to the normal distribution (Figure 71-2).

- 2.3 The total area under the beta distribution outside the specification limits is the fraction defective which is then multiplied by 100 to yield the percent defective; this subtracted from 100 gives the percent within limits.
- 2.4 Table 71-1 contains values for percent within limits as related to sample sizes and quality indices. The table was developed from mathematical calculations and is used in the manual method to estimate QL.

3. MANUAL PROCEDURE

3.1 Determine the arithmetic mean and standard deviation for the several test results from the lot for each element being evaluated. Compute these as shown in Equations 3.1 and 3.2.

$$\overline{X} = \frac{\sum X}{n}$$
 Equation 3.1

$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$
 Equation 3.2

Where:

 \overline{X} = Sample mean,

S = Summation of,

X = Individual test value to X_n,

n = Total number of test values,

s = Sample standard deviation.

3.2 Compute the upper quality index (Q_u) per Equation 3.3.

$$Q_u = \frac{T_u - \overline{X}}{s}$$
 Equation 3.3

Where:

Q_u = Upper quality index, T_u = Upper specification limits.

- 3.2.1 Determine P_u (percent within the upper specification limit which corresponds to a given Q_u) from Table 71-1. If desired, P_u may be interpolated to the nearest 0.1. Where T_u is not specified, P_u will be 100.
- 3.3 Compute the lower quality index (Q_L) per Equation 3.4.

$$Q_L = \frac{\overline{X} - T_L}{s}$$
 Equation 3.4

Where:

Q_L = Lower quality index, T_L = Lower specification limits.

- 3.3.1 Determine P_L (percent within the lower specification limit which corresponds to a given Q_L) from Table 71-1. If desired, P_L may be interpolated to the nearest 0.1. Where T_L is not specified, P_L will be 100.
- 3.4 Compute QL (the total percent within specification limits) per Equation 3.5.

QL =
$$(P_U + P_L)$$
 - 100 Equation 3.5

3.5 The manual method for determining QL essentially conforms to the applicable portions of AASHTO Standard Recommended Practice R 9, Acceptance Sampling Plans for Highway Construction.

3.6 A sample calculation is provided at the end of this procedure demonstrating the calculation of Quality Level and Pay Factors using this manual procedure.

4. COMPUTER ASSISTED PROCEDURE

- 4.1 The calculations for determining Quality Level may be performed by using the latest versions of the Departments quality level programs.
- 4.2 In the quality level programs, the areas under the beta distribution are calculated from the incomplete beta function ratio by assigning the variables used in Equations 3.1 through 3.4. The procedure is as described in *Numerical Recipes in C*₁, *Chapter 6*. A detailed discussion of the theories involved is provided by Willenbrock and Kopac in *TRR 691*, *Process Control in the Construction Industry*₂.
- 4.3 All numbers from the calculations are carried to significant figures and round according to AASHTO Standard Recommended Practice R 11, using the Rounding Method.
- 4.4 Where contractual pay factors are based on QL use the computer-assisted procedure only.

MATHEMATICAL PROCEDURE - Adapted from Resolution of beta-distribution equations for quality level analysis...₃

5.1 In order to evaluate the necessary quality parameters, the integral

$$I_{n} = \frac{1}{B(\frac{n}{2} - 1, \frac{n}{2} - 1)} \int_{0}^{g} t^{\frac{n}{2} - 2} (1 - t)^{\frac{n}{2} - 2} dt$$
 Equation 5.1

must be evaluated. In equation 5.1 B(n/2-1,n/2-1) is generally referred to as the complete beta-function (or just the beta-function) with parameters n/2-1,n/2-1, and the integral is the incomplete beta-function. Together they form the beta distribution from a random variable. The beta function is defined by

$$B(\frac{n}{2} - 1, \frac{n}{2} - 1) = \int_{0}^{1} t^{\frac{n}{2}} - 2 (1 - t)^{\frac{n}{2}} - 2 dt,$$
 Equation 5.2

and the upper limit 3n 5.1 is given by

$$g = \frac{1}{2} - \frac{Q\sqrt{n}}{2(n-1)}$$
 Equation 5.3

where Q is the quality index defined in Equations 3.3 and 3.4 and n is the sample size.

5.2 For small sample sizes no numerical integration is necessary as the integral may be economically evaluated in close form. In particular we have:

$$I_{3} = \frac{1}{2} + \frac{1}{p} \sin^{-1}(2g - 1)$$
 Equation 5.4
$$I_{4} = g$$
 Equation 5.5
$$I_{5} = \frac{1}{2} + \frac{1}{p} \sin^{-1}(2g - 1) + \frac{2}{p} \sqrt{g - g^{2}}(2g - 1)$$
 Equation 5.6
$$I_{6} = 3g^{2} - 2g^{3}$$
 Equation 5.7
$$I_{7} = \frac{1}{2} + \frac{1}{p} \sin^{-1}(2g - 1) - \frac{2}{3p} \sqrt{g - g^{2}}(2g - 1)(8g^{2} - 8g - 3)$$
 Equation 5.8
$$I_{8} = 10g^{3} - 15g^{4} + 6g^{5}$$
 Equation 5.9

These expressions are small enough to be used with some hand calculators. As the value of n increases the calculations become more complex. With the availability of personal computers, we include the equation for information and recommend the use of personal computers.

TABLE 71-1

								- / I-I							
				Up	per Qua	ality Ind	ex Qu c	r Lowe	Quality	/ Index	QL				
P _u or								n=10	n=12	n=15	n=19	n=26	n=38	n=70	n=
P∟	n=3	n=4	n=5	n=6	n=7	n=8	n=9	to n=11	to n=14	to n=18	to n=25	to n=37	to n=69	to n=	201 to
%											20	07		200	n=x
100 99	1.16	1.50 1.47	1.79	2.03	2.23	2.39	2.53	2.65	2.83	3.03	3.20	3.38	3.54	3.70	3.83
98	1.15	1.44	1.67 1.60	1.80 1.70	1.89 1.76	1.95 1.81	2.00 1.84	2.04 1.86	2.09 1.91	2.14 1.93	2.18 1.96	2.22 1.99	2.26 2.01	2.29 2.03	2.31 2.05
97		1.41	1.54	1.62	1.67	1.70	1.72	1.74	1.77	1.79	1.81	1.83	1.85	1.86	1.87
96	1.14	1.38	1.49	1.55	1.59	1.61	1.63	1.65	1.67	1.68	1.70	1.71	1.73	1.74	1.75
95	4.40	1.35	1.44	1.49	1.52	1.54	1.55	1.56	1.58	1.59	1.61	1.62	1.63	1.63	1.64
94 93	1.13	1.32 1.29	1.39 1.35	1.43 1.38	1.46 1.40	1.47 1.41	1.48 1.42	1.49 1.43	1.50 1.44	1.51 1.44	1.52 1.45	1.53 1.46	1.54 1.46	1.55 1.47	1.55 1.47
92	1.12	1.26	1.31	1.33	1.35	1.36	1.36	1.36	1.37	1.37	1.39	1.39	1.40	1.40	1.40
91	1.11	1.23	1.27	1.29	1.30	1.30	1.31	1.31	1.32	1.32	1.33	1.33	1.33	1.34	1.34
90	1.10	1.20	1.23	1.24	1.25	1.25	1.26	1.26	1.26	1.27	1.27	1.27	1.28	1.28	1.28
89 88	1.09 1.07	1.17 1.14	1.19 1.15	1.20 1.16	1.20 1.16	1.21 1.16	1.21 1.17	1.21 1.17	1.21 1.17	1.22 1.17	1.22 1.17	1.22 1.17	1.22 1.17	1.22 1.17	1.23 1.17
87	1.07	1.14	1.13	1.12	1.12	1.12	1.17	1.12	1.12	1.12	1.17	1.12	1.17	1.17	1.17
86	1.04	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08
85	1.03	1.05	1.05	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04	1.04
84 83	1.01 1.00	1.02 0.99	1.01 0.98	1.01 0.97	1.00 0.96	0.99 0.95	0.99	0.99							
82	0.97	0.96	0.95	0.94	0.93	0.93	0.93	0.92	0.92	0.92	0.92	0.90	0.95	0.95 0.92	0.95 0.92
81	0.96	0.93	0.91	0.90	0.90	0.89	0.89	0.89	0.89	0.88	0.88	88.0	0.88	0.88	0.88
80	0.93	0.90	0.88	0.87	0.86	0.86	0.86	0.85	0.85	0.85	0.85	0.84	0.84	0.84	0.84
79 78	0.91 0.89	0.87 0.84	0.85 0.82	0.84 0.80	0.83 0.80	0.82 0.79	0.82 0.79	0.82 0.79	0.82 0.78	0.81 0.78	0.81 0.78	0.81 0.78	0.81 0.77	0.81 0.77	0.81 0.77
77	0.87	0.81	0.78	0.30	0.76	0.76	0.76	0.75	0.75	0.75	0.75	0.74	0.74	0.74	0.74
76	0.84	0.78	0.75	0.74	0.73	0.73	0.72	0.72	0.72	0.71	0.71	0.71	0.71	0.71	0.71
75	0.82	0.75	0.72	0.71	0.70	0.70	0.69	0.69	0.69	0.68	0.68	0.68	0.68	0.68	0.67
74 73	0.79 0.76	0.72 0.69	0.69 0.66	0.68 0.65	0.67 0.64	0.66 0.63	0.66 0.63	0.66 0.63	0.66 0.62	0.65 0.62	0.65 0.62	0.65 0.62	0.65 0.62	0.64 0.61	0.64 0.61
72	0.74	0.66	0.63	0.62	0.61	0.60	0.60	0.60	0.59	0.59	0.59	0.59	0.59	0.58	0.58
71	0.71	0.63	0.60	0.59	0.58	0.57	0.57	0.57	0.57	0.56	0.56	0.56	0.56	0.55	0.55
70	0.68	0.60	0.57	0.56	0.55	0.55	0.54	0.54	0.54	0.53	0.53	0.53	0.53	0.53	0.52
69 68	0.65 0.62	0.57 0.54	0.54 0.51	0.53 0.50	0.52 0.49	0.52 0.49	0.51 0.48	0.51 0.48	0.51 0.48	0.50 0.48	0.50 0.47	0.50 0.47	0.50 0.47	0.50 0.47	0.50 0.47
67	0.59	0.51	0.47	0.47	0.46	0.46	0.46	0.45	0.45	0.45	0.45	0.44	0.44	0.44	0.44
66	0.56	0.48	0.45	0.44	0.44	0.43	0.43	0.43	0.42	0.42	0.42	0.42	0.41	0.41	0.41
65	0.52	0.45	0.43	0.41	0.41	0.40	0.40	0.40	0.40	0.39	0.39	0.39	0.39	0.39	0.39
64 63	0.49 0.46	0.42 0.39	0.40 0.37	0.39 0.36	0.38 0.35	0.38 0.35	0.37 0.35	0.37 0.34	0.37 0.34	0.36 0.34	0.36 0.34	0.36 0.34	0.36 0.33	0.36 0.33	0.36 0.33
62	0.43	0.36	0.34	0.33	0.32	0.32	0.32	0.32	0.31	0.31	0.31	0.31	0.33	0.33	0.33
61	0.39	0.33	0.31	0.30	0.30	0.29	0.29	0.29	0.29	0.29	0.28	0.28	0.28	0.28	0.28
60	0.36	0.30	0.28	0.27	0.27	0.27	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.25	0.25
59 58	0.32 0.29	0.27 0.24	0.25 0.23	0.25 0.22	0.24 0.21	0.24 0.21	0.24 0.21	0.24 0.21	0.23 0.21	0.23 0.21	0.23 0.20	0.23 0.20	0.23 0.20	0.23 0.20	0.23 0.20
57	0.25	0.21	0.20	0.19	0.19	0.19	0.18	0.18	0.18	0.18	0.20	0.20	0.20	0.20	0.18
56	0.22	0.18	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.15	0.15	0.15	0.15	0.15	0.15
55	0.18	0.15	0.14	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
54 53	0.14 0.11	0.12 0.09	0.11 0.08	0.11 0.08	0.11 0.08	0.10 0.08									
52	0.07	0.06	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
51	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.02
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

NOTE: When Q_u or Q_L falls between table values, estimate P_u or P_L to the closest 0.10.

TABLE 71-1

·				Up	per Qua	ality Ind	ex Qu c	r Lower	Quality	/ Index	QL				
P _u or								n=10	n=12	n=15	n=19	n=26	n=38	n=70	n=
Pւ %	n=3	n=4	n=5	n=6	n=7	n=8	n=9	to n=11	to n=14	to n=18	to n=25	to n=37	to n=69	to n= 200	201 to n=x
50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
49	-0.04	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0.02
48	-0.07	-0.06	-0.06	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05
47	-0.11	-0.09	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08	-0.08
46	-0.14	-0.12	-0.11	-0.11	-0.11	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10
45	-0.18	-0.15	-0.14	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13	-0.13
44 43	-0.22 -0.25	-0.18 -0.21	-0.16 -0.20	-0.16 -0.19	-0.16 -0.19	-0.16	-0.16 -0.18	-0.16 -0.18	-0.16	-0.15	-0.15	-0.15	-0.15	-0.15	-0.15
43 42	-0.29	-0.21 -0.24	-0.23	-0.19	-0.19	-0.19 -0.21	-0.18 -0.21	-0.16 -0.21	-0.18 -0.21	-0.18 -0.21	-0.18 -0.20	-0.18 -0.20	-0.18 -0.20	-0.18 -0.20	-0.18 -0.20
41	-0.32	-0.27	-0.25	-0.25	-0.24	-0.24	-0.24	-0.24	-0.23	-0.23	-0.23	-0.23	-0.23	-0.23	-0.23
40	-0.36	-0.30	-0.28	-0.27	-0.27	-0.27	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.26	-0.25	-0.25
39	-0.39	-0.33	-0.31	-0.30	-0.30	-0.29	-0.29	-0.29	-0.29	-0.29	-0.28	-0.28	-0.28	-0.28	-0.28
38	-0.43	-0.36	-0.34	-0.33	-0.32	-0.32	-0.32	-0.32	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31	-0.31
37 36	-0.46 -0.49	-0.39 -0.42	-0.37 -0.40	-0.36 -0.39	-0.35 -0.38	-0.35 -0.38	-0.35 -0.37	-0.34 -0.37	-0.34 -0.37	-0.34 -0.36	-0.34 -0.36	-0.34 -0.36	-0.33 -0.36	-0.33 -0.36	-0.33 -0.36
35	-0.52	-0.45	-0.43	-0.41	-0.41	-0.40	-0.40	-0.40	-0.40	-0.39	-0.39	-0.39	-0.39	-0.39	-0.39
34	-0.56	-0.48	-0.45	-0.44	-0.44	-0.43	-0.43	-0.43	-0.42	-0.42	-0.42	-0.42	-0.41	-0.41	-0.41
33	-0.59	-0.51	-0.47	-0.47	-0.46	-0.46	-0.46	-0.45	-0.45	-0.45	-0.45	-0.44	-0.44	-0.44	-0.44
32 31	-0.62 -0.65	-0.54 -0.57	-0.51 -0.54	-0.50 -0.53	-0.49 -0.52	-0.49 -0.52	-0.48 -0.51	-0.48 -0.51	-0.48 -0.51	-0.48 -0.50	-0.47 -0.50	-0.47 -0.50	-0.47 -0.50	-0.47 -0.50	-0.47 -0.50
30	-0.68	-0.60	-0.57	-0.56	-0.55	-0.55	-0.54	-0.54	-0.54	-0.53	-0.53	-0.53	-0.53	-0.53	-0.52
29	-0.71	-0.63	-0.60	-0.59	-0.58	-0.57	-0.57	-0.57	-0.57	-0.56	-0.56	-0.56	-0.56	-0.55	-0.55
28	-0.74	-0.66	-0.63	-0.62	-0.61	-0.60	-0.60	-0.60	-0.59	-0.59	-0.59	-0.59	-0.59	-0.58	-0.58
27 26	-0.76 -0.79	-0.69 -0.72	-0.66 -0.69	-0.65 -0.68	-0.64 -0.67	-0.63 -0.66	-0.63 -0.66	-0.63 -0.66	-0.62 -0.66	-0.62 -0.65	-0.62 -0.65	-0.62 -0.65	-0.62 -0.65	-0.61 -0.64	-0.61 -0.64
25	-0.82	-0.75	-0.72	-0.71	-0.70	-0.70	-0.69	-0.69	-0.69	-0.68	-0.68	-0.68	-0.68	-0.68	-0.67
24	-0.84	-0.78	-0.75	-0.74	-0.73	-0.73	-0.72	-0.72	-0.72	-0.71	-0.71	-0.71	-0.71	-0.71	-0.71
23	-0.87	-0.81	-0.78	-0.77	-0.76	-0.76	-0.76	-0.75	-0.75	-0.75	-0.75	-0.74	-0.74	-0.74	-0.74
22 21	-0.89 -0.91	-0.84 -0.87	-0.82 -0.85	-0.80 -0.84	-0.80 -0.83	-0.79 -0.82	-0.79 -0.82	-0.79 -0.82	-0.78 -0.82	-0.78 -0.81	-0.78 -0.81	-0.78 -0.81	-0.77 -0.81	-0.77 -0.81	-0.77 -0.81
20	-0.93	-0.90	-0.88	-0.87	-0.86	-0.86	-0.86	-0.85	-0.85	-0.85	-0.85	-0.84	-0.84	-0.84	-0.84
19	-0.96	-0.93	-0.91	-0.90	-0.90	-0.89	-0.89	-0.89	-0.89	-0.88	-0.88	-0.88	-0.88	-0.88	-0.88
18	-0.97	-0.96	-0.95	-0.94	-0.93	-0.93	-0.93	-0.92	-0.92	-0.92	-0.92	-0.92	-0.92	-0.92	-0.92
17 16	-1.00 -1.01	-0.99 -1.02	-0.98 -1.01	-0.97 -1.01	-0.96 -1.00	-0.95 -0.99	-0.95 -0.99	-0.95 -0.99							
15	-1.03	-1.05	-1.05	-1.04	-1.04	-1.04	-1.04	-1.04	-1.04	-1.04	-1.04	-1.04	-1.04	-1.04	-1.04
14	-1.04	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08	-1.08
13	-1.06	-1.11	-1.12	-1.12	-1.12	-1.12	-1.12	-1.12	-1.12	-1.12	-1.12	-1.12	-1.12	-1.13	-1.13
12 11	-1.07 -1.09	-1.14 -1.17	-1.15 -1.19	-1.16 -1.20	-1.16 -1.20	-1.16 -1.21	-1.17 -1.21	-1.17 -1.21	-1.17 -1.21	-1.17 -1.22	-1.17 -1.22	-1.17 -1.22	-1.17 -1.22	-1.17 -1.22	-1.17 -1.23
10	-1.10	-1.20	-1.23	-1.24	-1.25	-1.25	-1.26	-1.26	-1.26	-1.27	-1.27	-1.27	-1.28	-1.28	-1.28
9	-1.11	-1.23	-1.27	-1.29	-1.30	-1.30	-1.31	-1.31	-1.32	-1.32	-1.33	-1.33	-1.33	-1.34	-1.34
8	-1.12	-1.26	-1.31	-1.33	-1.35	-1.36	-1.36	-1.36	-1.37	-1.37	-1.39	-1.39	-1.40	-1.40	-1.40
7 6	-1.13	-1.29 -1.32	-1.35 -1.39	-1.38 -1.43	-1.40 -1.46	-1.41 -1.47	-1.42 -1.48	-1.43 -1.49	-1.44 -1.50	-1.44 -1.51	-1.45 -1.52	-1.46 -1.53	-1.46 -1.54	-1.47 -1.55	-1.47 -1.55
5		-1.35	-1.44	-1.49	-1.52	-1.54	-1.55	-1.56	-1.58	-1.59	-1.61	-1.62	-1.63	-1.63	-1.64
4	-1.14	-1.38	-1.49	-1.55	-1.59	-1.61	-1.63	-1.65	-1.67	-1.68	-1.70	-1.71	-1.73	-1.74	-1.75
3		-1.41	-1.54	-1.62	-1.67	-1.70	-1.72	-1.74	-1.77	-1.79	-1.81	-1.83	-1.85	-1.86	-1.87
2	-1.15	-1.44	-1.60	-1.70 1.80	-1.76	-1.81	-1.84	-1.86	-1.91	-1.93	-1.96	-1.99	-2.01	-2.03	-2.05
1	-1.16	-1.47 -1.50	-1.67 -1.79	-1.80 -2.03	-1.89 -2.23	-1.95 -2.39	-2.00 -2.53	-2.04 -2.65	-2.09 -2.83	-2.14 -3.03	-2.18 -3.20	-2.22 -3.38	-2.26 -3.54	-2.29 -3.70	-2.31 -3.83
J	-1.10	- 1.50	-1.79	-2.03	-2.23	-2.59	-∠.≎≎	-2.00	-2.03	-3.03	- 3.20	-3.38	-3.34	-3.70	-3.83

NOTE: When Q_u or Q_L falls between table values, estimate P_u or P_L to the closest 0.10.

FIGURE 71-1

Footnotes:

- 1. Numerical Recipes in C, the Art of Scientific Computing; by W. H. Press, B.P. Flannery, S. A. Teukolsky and W.T. Vetterling. Cambridge University Press, The Pitt Bldg, Trumpington Street, CB2 1RP, 40 West 20th St., New York, NY 10011. Copyright 1988.
- 2. Development of a Highway Acceptance Plan, by Jack H. Willenbrock, Pennsylvania State University and Peter A. Kopac, Federal Highway Administration. TRR 691, Process Control in the Construction Industry, National Academy of Sciences, Washington, D.C. 1978.
- 3. Resolution of Beta-Distribution Formulas for Quality Level Analysis, a report to the Colorado Department of Transportation from the Colorado Workshop on Mathematical Problems in Industry, prepared by F. Jay Bourland, Department of Mathematics, Colorado State University and Alistair Fitt, Department of Mathematics, University of Southampton.

			· ·
	•		