Muscellanions Series # 195-A

A Report on

One Year's Study

of the

Middle Park Hay Problem.

by the

Animal Investigations Section

Colorado Agricultural Experiment Station

Colorado State College

Fort Collins, Colorado

april 20 1943

(7845-43)

Nutrient Utilization by Cattle of Certain Native Mountain Meadow Hays Showing a History of Toxic Properties.

OBJECTIVES

- (1) To study nutrient utilization by growing cattle of certain Middle Park hays which in many instances have been known to exhibit toxic properties as well as a low phosphorus content.
- (2) To find if possible the true cause for the toxic symptoms shown at times by animals fed such hays.

REASONS FOR THE STUDY

The county agent and various ranchers of the Middle Park area requested the Animal Investigations Section to conduct studies attempting to throw some light on the true cause of many and varied ill effects observed in cattle fed upon native hays grown in the district.

HISTORY

- (1) Many times during the past few years the county agent and ranchers of the Middle Park district have reported illness and death among cattle receiving rations made up essentially of native meadow hays grown in the area. The usual symptoms were eye involvement (watering of the eye, sometimes encrustations of a blue gray color) diarrhea, emaciation, loss of weight, and frequently death.
- (2) Extension Veterinarian diagnosed the trouble as vitamin A deficiency.
- (3) At one time pathologists of the Veterinary Division thought trouble might be due to an infestation of intestinal parasites found in excreta from some of the cattle.
- (4) County agent working on supposition that the trouble might be phosphorus deficiency advised feeding of bone meal. This seemed to be beneficial in some instances.
- (5) Asdell of Cornell University and Weihnig of Colorado School of Mines reported presence of selenium as well as phosphorus deficiency in some of the hay.
- (6) Many animals of the region showed a condition of overgrowth of hooves which might be due to selenium toxicity as well as high alkalinity of soil.
- (7) The Animal Investigations, Veterinary Pathology, and Chemistry sections found 50 p.p.m. of molybdenum in hay from one ranch in the Middle Park area. Cattle fed this hay did not do well and were troubled with a somewhat continuous looseness of the bowels which at no time could be labeled a true diarrhea or scours.

- (8) The Animal Investigations Section found later in a short balance experiment with the same animals and hay as discussed above (7) that the animals were in negative phosphorus balance and were also storing molybdenum during the experiment. A fairly large quantity of molybdenum was found in the urine showing the animals were metabolizing the element. The above results suggested that the trouble might have been either a phosphorus deficiency, molybdenum toxicity, or the effect of both working together. The Animal Investigations Section also reported that this hay contained traces of lead, zinc, copper, silver, platinum, and vanadium as well as molybdenum.
- (9) Animal Investigations Section found a phosphorus deficiency in nine (9) hay samples from different parts of the Middle Park area.

ARRANGEMENTS MADE FOR THE STUDY

Following preliminary discussions of the Middle Park problem by various ranchers; Mr. H. V. McCullah, the county agent of Grand and Summit counties; and College and Experiment Station personnel, the following arrangement was agreed upon:

- I. The county commissioners of the counties concerned were to appropriate the sum of \$500 to be used for the expenses of baling and hauling of hay and the hauling of animals to the Experiment Station at Fort Collins where the experiments were to be conducted.
- II. Certain ranchers located at points representative of the headwaters and mouths of the principal streams draining the Middle Park area agreed each to supply for the study one heifer calf and approximately two (2) tons of baled hay produced on their respective ranches.
- III. The Agricultural Experiment Station agreed to supply the personnel, apparatus and materials necessary for such a study, and to conduct the study in such a manner as to find in the shortest possible time a solution for the problem. To do this the Experiment Station appropriated the sum of \$700 to be used to build metabolism stalls, purchase chemicals and apparatus, and to employ a part time graduate assistant to work on the problem.

The experimental work was placed under the direct supervision of L. E. Washburn, Associate in Animal Investigations.

A decision was reached early during the preliminary discussions of the Middle Park problem that chemical and vegetation analyses of the hays could not alone solve the problem. It would be necessary to find as nearly as possible just what the animals derived from the digestion of the hay in order to properly interpret the troubles previously reported. Hence, it was considered essential to conduct the experiment as a metabolism balance study in which cricital analyses of excreta as well as of hay and water were made.

EXPERIMENTAL

Eight heifer calves (Hereford) were delivered to the Animal Investigations Section on November 27, 1941. Immediately thereafter was begun the training of these animals to lead by halter and to accept the new conditions imposed upon them in the metabolism stalls. The calves and hay were contributed by the following ranchers:

Subject No.	Rancher	Location
11	Fay DeBerard	Troublesome
12	Fred Grimes	Troublesome
13	F. C. DeBerard	Kremmling
14	Mike Hinman	Kremmling
15	James Short	Kremmling
16	Andrew Lindstrom	Dillon
17	Ed Yust	Kremmling
18	Taussig Bros.	Parshall

(The subject numbers given in the above list are used throughout this report to identify the calves and their respective hays.)

Each day (weather permitting), except when they were being used in metabolism experiments, the calves were kept out of doors in a dry-lot. At night they were housed in individual stalls in the Horse Barn adjacent to the room in which metabolism experiments were conducted. The animals were fed their respective hays twice each day and watered (Fort Collins city water) once a day. Common salt (NaCl) was placed before the animals so that they could consume it at liberty.

Three separate metabolism balance experiments each of 14-15 days duration were run on all of the calves. In the first two experiments the animals were fed hay supplemented only with salt. During the third balance trial phosphoric acid (Phosilage-Montsanto Chemical Co., St. Louis, Mo.) supplements were given to each calf by drenching in amounts to bring the phosphorous intake to 10 grams per head per day.

During the metabolism balance trials feed, water, refuse, and excreta were accurately separated, measured, and sampled. Hence, it was essential to confine the animals in the metabolism stalls continuously during these periods. Analyses for moisture, dry matter, nitrogen, ash, silica, calcium, phosphorous, molybdenum, and carotene in accordance with accepted methods were run on the metabolism trial samples in order to calculate metabolic balance data.

SAMPLE No•	RESIDUE FROM 500 ml.	дď	CALCIUM Mgs./500 ml.	PHOSPHORUS	PRINCIPAL TOXIC ELEMENTS	E) (Decreasing Principal	EIEMENTS g order of Magnitude) Average Trace	nitude) Trace
1 (Fred DeBe	0.2808 8.47 10.20 (Fred DeBerard, Peak Ranch Spring Water)	8.47 1 ch Spring	10.20 g Water)	£0 ° 0	Vanadium	Magnesium Calcium	Copper Lead	Aluminum Barium
2 (Fay DeBer	2 0.2352 8.60 24.00 (Fay DeBerard, Troublesome Spring Water)	8.60 ome Sprin	24.00 g Water)	0.12	Vanadi um Molybdenum	Magnesium Caletum	Copper Lead	Silver Bertum
3 (Mike Hinaman	0.4822 8. man Well Water)	8.36 er)	52.08	80.0	Vanadium Molybdenum	Magnesium Calcium	Copper	Silver Barium
4 (Taussig R	0.0616 8. (Taussig Ranch Well Water)	8.18 ter)	۲۰ 80 م	0.08	Vanadium Molybdenum	Magnesium Galcium	Lead	Barium
5 (Grimes Ra	(Grimes Ranch, Troublesome River Water)	8.13 ome River	20.40 Water)	91.0	Vanadium Molybdenum	Magnesium Calcium	Copper Lead	Berium Beren
6 (Taussig R	(Taussig Ranch Creek Water)	8,21 ater)	7.80	L0 •0	Vanadium Wolybdenum	Magnesium Calcium	Lead Chromium	Silver Barium
7 (Fred DeBe	0.1007 8.15 (Fred DeBerard, House, Lower Ranch	g.15 Lower Ranc	10.56 h City Water)	90*0	Vanadium Molybdenum	Magnesium Aluminum	Copper Chromium	Lead
g (Fred Debe	\$ 0.1697 8.07 15.60 (Fred Deberard, Peak Ranch Greek Water)	8.07 nch Creek	15.60	0.03	Vanadium Molybdenum	Magnesium Calcium	Copper Silver	Barium Boron
9 (Yust Ranc	0.0831 9.21 (Yust Ranch, Blue River Bridge		6.60 River Water)	40•0	Venadium Molybdenum	Magnesium Galcium	Copper Lead	Barium Boron
10 (Jim Short	(Jim Short, Muddy River Sample	8.03	60.24 River Water)	† 0°○	Vanadium	Magnesium Calcium	Copper Chromium	Lead

TAHE I, Continued

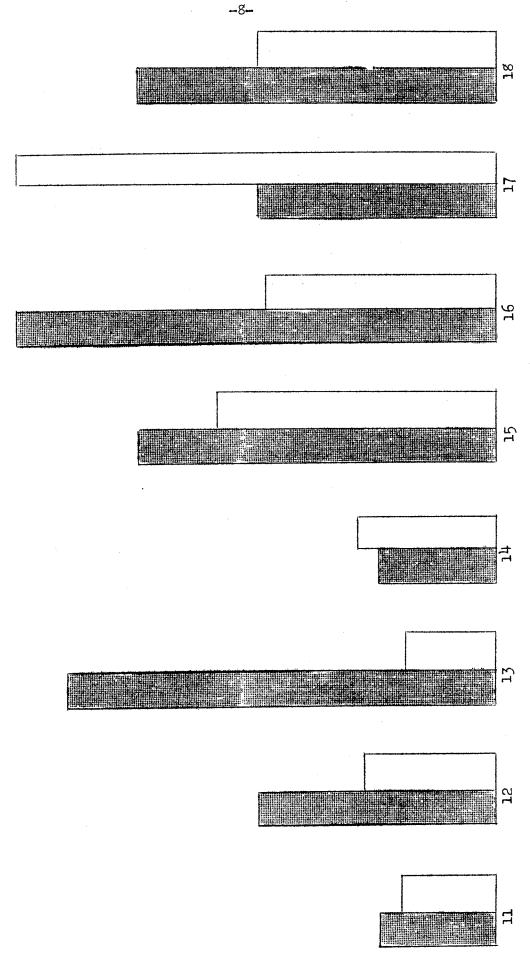
MUST WILL WROM				PRINCIPAL	国	ELEMENTS	
500 ml.	Hd.	CALCIUM Mgs./500 ml.	PHOSPHORUS Mgs./500 ml.	TOXIC ELEMENTS	(Decreasing Principal	(Decreasing order of Magnitude) rincipal Average Trace	oitude) Trace
0.0800 8.23 7.20 0 (Ten Mile Creek Water)	8.23 East of	7.20 Dillon Greek W	0.07 ater)	Vanadium Moly bde num	Magnesium Calcium	Copper Lead	Barium Lithium
2 0.0683 8.25 4.20 (Snake River, 2 liles East of Dillon River	8.25 last of Di	μ.20 illon River Water)	0.03 er)	Vanadium Molybdenum	Magnesium Calcium	Copper	Silver Barium
0.0696 7.95 (Lindstrom Ranch, Blue River Bridge	7.95 River Bri	5.40 idge River Water)	0.06	Vanadium Molybdenum	Magnesium Calcium	Lead* Chromium	Silver Barium
(Blue River below Bridge East of Dillon	8.53 ge Ea st of	22	0.04 River Water)	Vanadium Wolybdenum	Magnesium Aluminum	Copper Silver	Potassium Lithium
0.0323 (Fort Collins City Water	w	.18 4.80 Laboratory Sample)	0•03	Vanadi um Molybdenum	Magnesium Calcium	Lead Boron	Silver Barium

*Might be present to the extent of 10-20 percent of the residue in these samples.

ANALYSIS OF MIDILE PARK HAYS

TARIE II

Hay Sample	Moisture %	Dry Matter	Crude Protein	A sh	සු 🎉	ኮ ፥ <i>ጆ</i> ኖ	Ca:P Ratio
1. Earl Rice, Dillon	7.11	92,89	1	ţ	ή1ή-0	0.179	2.31
2. Ed Linke, Granby	6.55	97.45	-1	1	0,451	0.131	1,1
3. F. C. DeBerard (Alf.), Kremmling	6.50	93.38	1	ł	2,316	0.073	31.73
4. F. C. DeBerard (Bingo), Kremmling	6.13	93.87	1	į	0.554	0,106	5.23
5. F. C. DeBerard (Wild Hay-Peak), Kremmling	6.53	93.47	į	ł	0.558	0.082	6.80
6. Bill Zwahlen, Troublesome	6*23	93.77	*	i	0.470	0.133	3.53
7. No name	00 ° 9	00°76	1	ţ	0.385	0.095	4.05
3. James Short, Kremmling	5.70	94.30	•	ŧ	0.602	0.078	7.72
9. E. Fulscher, Granby	6.23	93.77	1	1	0.598	0.117	5,11
10. Glenn Sherriff (2), Hot Sulphur	7.39	92.61	6ħ•7	5.82	0.559	0.151	3.70
11, Walton Bungarner(N), Kremmling	6.73	93.27	8-28	7.05	0.719	0.156	4.61
12. Welton Bumgarner(S), Kremmling	6. 97	93.03	5.32	5.86	0.316	0.155	₹ 0 *2
13. Glenn Sherriff(1), Hot Sulphur	7.26	92.74	7.30	6,14	0.379	0.208	1,82
14. Taussig Bros., Parshall	9 2-59	93.22	5.98	5.03	0.458	0.175	2,62
15. W. E. Daxton, Frazer	7.32	92•68	8,99	8.01	0.754	0.221	3.41
16. Bazle Kasack (4), Hot Sulphur	#Z*9	93.76	5.76	6-36	0.483	0.118	60°†
17. H. C. Black, Parshall	9 • , 9	93.60	7.23	†9 • 9	767.0	0.146	5,46
18, Glenn Sherriff (3), Hot Sulphur	7.12	92.88	6.27	18*1	0.540	0.137	3.94
19. J. A. Murphy, Frazer	5*78	94.22	11,29	2,48	0.00	0.235	ਰ ਂ ‡
20. J. A. Murphy, Frazer	7.33	29.26	8.73	8,01	998.0	0.114	9•2

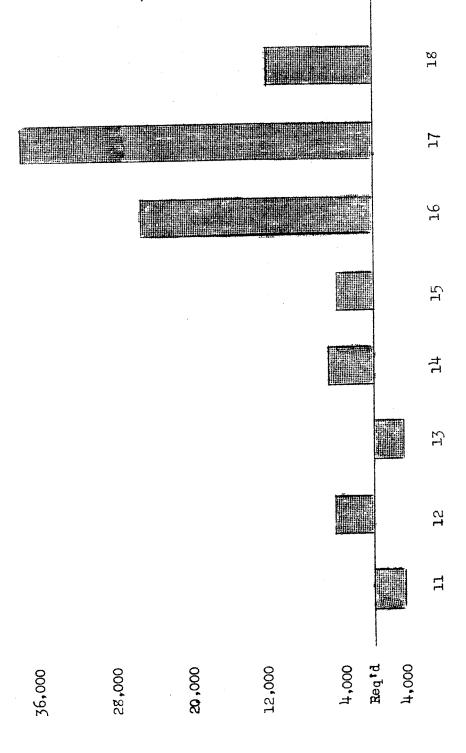

ANALYSIS OF EXPERIMENTAL HAYS

TARLE III

***************************************	Hay Sample	Moisture %	Moisture Dry Matter	Crude Protein	Ash	S S	tr: 26	CatP Ratio	Molybdenum p.p.m.	Ash pH	Carotene y per gm.
+	Fay DeBerard. Troublesome	16.65	83•35	7.66	7.56	፲ ቲቲ*0	0.149	2,96	Τ <u>΄</u> 8	10.58	4.13
8	Fred Grimes, Troublesome	12,80	87.20	6.62	7.27	4 62•0	2910	1.76	3.5	10.55	5*60
3	F. C. DeBerard, Kremmling	12.76	42 * 28	7.11	6.12	0.339	0.156	2.17	23.3	10.59	1,6•€
.	Mike Hinaman, Kremmling	16.66	83.34	π8•9	5.99	0.332	0.139	2.39	23.6	10.90	±7- 2,88 2,-
5	James Short, Kremmling	12,46	45-78	11.39	8.15	0.309	0.126	2.45	13.9	9-30	11,60
•	Andrew Lindstrom, Dillon	64.6	90•51	10.431	6.58	0.386	0.154	2,51	28.6	11,10	9.53
7	Ed Yust, Kremmling	9-71	90*59	69°1	5.86	0.403	0.120	3.36	12.2	11.48	20-77
80	Taussig Bros., Parshall	12,81	87.19	90•9	5.37	0.245	0.245 0.137	1.79	9.5	10.85	10,00
ł											

RELATIVE GREEN AND CAROTENE VALUES

Middle Park Experimental Hays



Solid Black = Judged Green Value

Open = Actual Carotene Value

000° †\†

SUMMARY TABLE
FEED, WATER, AND EXCRETA DATA
MIDDLE PARK HAY EXPERIMENT

TABLE IV

1941-42

				24-T46T			
					A verage Daily		
Calf No.	Experiment No.*	Hay Fed (Gms.)	Eey Refu sed (Gms.)	Eay Consumed (Gms.)	Water Consumed (Gms.)	Feces (Gms.)	Urine (Gms.)
11	785	3241 4654 4 67 2	904 1155 477	2337 3499 4195	5642 11664 11329	3915 7054 8256	1216 1355 2035
12	7 2 5 1	3791 14149 14635	424 612 8 / 4	3313 4230 4211	8094 11280 8698	5788 7035 6648	1976 1969 1322
13	чак	3900 5142 5628	989 882 903	2911 4260 4725	5323 13131 11677	3825 7573 8212	1341 1877 1993
† τ	7 0 5	3945 4687 4307	608 566 191	3337 4121 4116	7809 10815 10356	6243 6948 8164	1417 2252 1028
15	785	1995 2828 3946	968 565 1263	1027 2263 2683	1692 6112 8101	1514 3369 4556	791 1154 2319
16	7 2 5	5664 5283 4935	1528 776 463	4136 14507 1472	12038 15765 14329	9127 8252 9544	2375 2750 2173
17	H 0. W	2861 3692 3837	657 968 768	2204 2724 3069	4529 727 8237	3504 3934 6235	1210 1586 1397
18 *Phos	1 18 2 3 *Phosphoric acid	3317 3764 4134 supplemented in	1056 338 537 in Expt. 3.	2261 3426 3497	6520 10400 7759	4 610 6805 6222	1498 1387 1581

TABLE OF LIVE WEIGHTS

TABLE V

(Average Weight in Pounds)

CALF NUMBER	11	12	13	174	15	16	17	18
DATE								
11/27/41	390	Ott.	425	1420	260	1,30	235	320
1/23-26/42	358	705	1,05	014	220	804	228	315
3/35/42	383	433	436	₁ 429	1 02	0111	229	335
14/16-18/42	398	453	452	19 t	56 4	ħ/ t	256	358
5/20-22/42	7t08	0811	ο2η	1,72	270	517	268	365
7/23-25/42	147	527	530	503	290	567	288	1,02
9/35/42	1450	527	245	501	308	572	292	393
TOTAL GAIN (Initial to Maximum)	99	87	122	83	1,8	142	57	82
RATE OF GAIN (Percent of Original) 15.38% 19.77%	15.38%	19.77%	28-71%	28-71% 19.76%	18,46%	33.02%	24.26%	25.63%

*No. 12 fed No. 18 Hay in Expts. 2 and 3.

DIGESTION BALANCE DATA (Taken from Expt. I)

Retention	Sm2 • Sm2•	0.425 -0.0018	1.939 0.0011	7470.0 587	1,290 0,0620	0.480 0.0095	2,447 0,0481	0.507 -0.0139	0.526 0.0013
Rete	Ca gms	₹80•0-	4.815	-2.318	114.0	460.0-	1.248	1.380	669•0-
	Nitrogen gms.	-2.554	4.356	5.644	2.823	2.797	16,000	4.391	-1,155
hili tv	Nitrogen	21.68	42 . 48	148.17	37.06	72.12	52.14	43.13	36.23
Tigesti hili	Dry Matter	81.18	46.34	<i>L</i> π*69	74.99	79.28	76-77	02*99	71.63
701 t Me		11	12	13	1,1	15	16	17	18

CONCLUSIONS

- 1. A mild looseness of the bowels of calf number 16 which could not be called diarrhea or scours but which persistently recurred throughout all three experiments; and a poor appetite shown by calf number 15 are the only symptoms similar to those previously reported, which occurred in these experiments. At no time during the period of experimentation could the health of any of the calves be labeled as poor from casual gross inspection.
- 2. All waters of the Middle Park region analyzed prior to these experiments were alkaline, carried appreciable residue, were high in calcium and low in phosphorous, and contained molybdenum and vanadium, so-called toxic elements.
- 3. All experimental hays yielded ash residues which were quite highly alkaline in reaction. In general hays produced south of the Colorado River exhibited greatest alkalinity of ash.
- 4. In general the analyses of Middle Park hays show high calcium and low phosphorous content. The experimental hays presented a somewhat narrower range between calcium and phosphorous than did hays produced in the preceding season.
- 5. According to accepted standards all calves except numbers 11 and 13 received adequate intakes of carotene. During the period of experimentation no apparent signs of vitamin A deficiency were presented by any of the calves. In general highest carotene content was shown in those hays produced south of the Colorado River.
- 6. Molybdenum was present in all of the experimental hays, reaching highest levels in numbers 13, 14, and 16. The only toxic symptom thought to be produced by molybdenum was the looseness of bowels shown by calf number 16.
- 7. The feeding of phosphoric acid supplement in Experiment 3 definitely improved the appetite of calves 11, 15, and 17 as shown by the increased intake of feed.

Report respectfully submitted by

L. E. Washburn
April 24, 1943.