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ABSTRACT

Surface water storage reservoirs in karstified limestone areas, as well as in some other geological forma-
tions, are often connected to significant natural underground storage capacities. The underground storage repre-
sents a cost-free augmentation of the surface storage. A mathematical model of optimal reservoir management
under these conditions was developed. The model is based on the assumption that water value to various users
during different time periods of the year were known, Performing several levels of optimization by dynamic pro-
gramming, the optimal policy of water release was obtained for hydrologic sequences, either observed or generated.
The optimal policy obtained by this model can be used to establish operational rules and to find the optimal
reservoir size.

The oversimplification of the contribution of the underground storage to the surface reservoir is to sum
the corresponding storage capacities. However, a mathematical formulation of the physical reality is needed. An
optimization model and a mathematical description of the exchange flow between the two storage subsystems were
developed also.

Theories associated with the recession curve of the river hydrograph were often founded on the linear
relationship between the river flow and the content of the underground storage. An implicit assumption of the
model was that the water content of the surface subsystem remains unchanged over an extended period of time.
When a surface reservoir is constructed, the above assumption is no longer valid. Under these conditions, a
mathematical formulation of the coupled storage was developed when both storages change with time. As in the
derivation of the hydrograph recession curve, it is assumed that the flow from one storage to the other is
determined by their states.

The state of the underground subsystem of porous karstified limestones is usually greatly affected by natural
recharge to the aquifer. The laws governing the recharge are distinct from those of classical river basins.
For that reason, a mathematical model for recharge to the karstic aquifer was developed. A model is based on
the fact that the autoregressive-moving average (ARMA) model was a valid description of the river flow when the
system is assumed linear. A method of estimating the parameters of the recharge model from the ARMA model is
given.

FOREWORD

In providing storage capacity for water regulation either surface or underground space is used. For the
surface storage new reservoirs are constructed or the existing storage space is transformed and used for flowy
regulation. For the underground storage, aquifers have been used for flow regulation by water recharge recently
However, the use of rock voids for large storage capacity still awaits various practical methods of solution.
Recently, the combined use of surface and underground storage capacities has been studied for physically non-
interconnected storage capacities. By their management they are treated as operationally combined storage
capacities.

In developing controlled underground storage, several important problems must be solved. Dimensions of the
total groundwater environment participating in the storage has to be estimated, overall porosity and its dis-
tribution evaluated. Because the time factor is important in filling and emptying the underground storage voids,
the effective porosity needs to be determined. The effective porosity is defined as that part of the total
volume of voids, which can be used during usual time intervals of recharge or emptying of groundwater voids.
Because difficulties exist in estimating the above characteristics, the study of complex underground storage is
more difficult than the study of surface storage.

One of the least studied problems is the use of physically coupled surface and underground storage capacities.

In this combined system, any fluctuation in surface storage is automatically reflected in level fluctuations of
underground storage, because the two storage capacities physically interact. This paper by Dr. D, Isailovic
refers to the joint use of these physically interconnected, surface and underground storage capacities.
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The karstified limestone and dolomite formations are among the most characteristic geological formations in
which surface and underground storage capacities can be simultaneously developed and operated. Their porosity
is composed of: different sizes of rock fissures, dissolved channels and caves, voids in gravel and sand de-
positions, and voids in depositions of other materials inside the old fissures, channels, and caves. Important
factors in studying the underground storage of karst formations is the relationship between the future range of
surface and underground storage level fluctuations and the history of tectonic movement of large karst blocks.
In cases of deep karstification, the submerged karstified blocks may contain a large percentage of voids, and
may have a large spacial extention. Up to five percent of the total rock space may be composed of voids, to be
available for water storage. For a shallow karstification or for lifted karstified blocks, the percentage of
voids and the total space involved are limited to a porosity of up to one percent,

In developing an underground storage for flow regulation in karst formations, two types of alternatives
should be considered. Interconnected surface and underground storage capacities are developed as the primary
alternatives whenever feasible, because they may be easy to accomplish economically. The control of water leak-
age from both capacities is usually a precondition for implementing these alternatives. When sites of economical
joint surface and underground storage development in karst regions are exhausted, or when the potential water
leakage is assessed to be both of a high risk and of large quantities, alternatives of using only the underground
storage should be studied.

In many cases the large karst springs occur at the contact between highly karstified limestone and an
imperious formation. The spring water might have eroded the imperious formation in a triangular shape, with
water drainage at its lowest point. It may then be feasible to grout a rock mass above the spring f@s an under-
ground impervious dam), which will raise the water level in the karst formation as high as it may be economiaally
feasible. The water outflow is then controlled by an outlet conduit. In some cases this control conduit may be
located much below the spring level. Sufficiently large karst water storage could thus be created. The exper-
ience with coupled surface and underground karst storage developments may produce a sufficient scientific
information to be applied also to developments of pure underground karst storage capacities.

The basic problem in utilizing the underground karst storage space is to involve as large a rock mass in
storage as possible. If the rock mass between the upper and lower fluctuation levels is 20-50 times as large as
the surface storage capacity, then 1-2 percent of the effective rock porosity will produce an underground storage
capacity of 20-100 percent of the surface storage capacity.

While a surface storage capacity reacts instantaneously to opening of outflow outlets or to water inputs,
the underground storage capacity has a time-delaying effect. To recharge water into the voids or to take water
out of voids of an underground pervious formation, time is necessary. Therefore, any coupled underground stor-
age to a surface storage must take time delays into account in one way or another. This problem has been treated
by Dr. D. Isailovié in a particular way, namely by a relationship between the interchange of water flow between
surface and underground storages to total storage volume, The response hydrographs to changes in the relative
storage levels of two capacities indirectly incorporate these time delays. The basic problem of physically
coupled surface and underground storage capacities is how to estimate the response properties of underground
storage to surface storage changes and how to develop mathematical models for the operation of two capacities as
a unit. This has been presented in the paper. Several problems need to be resolved, namely how large will an
underground storage capacity be to a given surface storage, what the effect of underground storage will be on
floods after the surface reservoir is constructed, namely whether flood peaks coming out of karst formation into
surface storage through large karst springs will be increased or decreased by the underground storage. This
question of floods will reflect on design of reservoir spillway capacity and downstream flood control. Further-
more, the question arises for the influence of increased underground storage and longer water time residence in
karst formations on water quality.

In presenting this paper by Dr. D. Isailovi¢, it should be stressed that the problem of finding proper
solutions to a joint operation of surface and underground storage capacities is not only related to karst forma-
tions. Other formations like sandstones, some volcanic rocks, large deposits of sand and gravel, and many
fissured rocks can also produce a significant underground storage capacity by surface reservoirs. 1In practical
terms, the problem is how large the percentage of an underground storage capacity should be in terms of surface
storage capacity for the underground storage to be considered as a coupled storage to the surface storage,
rather than being ignored or simply added to the surface storage.

Vujica Yevjevich

Professor-in-Charge

Hydrology and Water Resources Program
Civil Engineering Department
Colorado State University

Fort Collins, Colorado
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Chapter |
INTRODUCTION

1-1 Preliminary Remarks

Efficient management of water resources calls for
a set of hierarchical decisions concerning every speci
fic project. Surface reservoirs appear to be a domi-
nant component of almost every important water resource
system. The reservoir operation is regarded as one of
the most important aspects of the storage analysis
since the system performance depends, to a large ex-
tent, on the way the reservoir is operated. This
analysis is a part of the process by which the reser-
voir size is selected.

Three groups of approaches are commonly used to
analyze a storage capacity: empirical, experimental,
and analytical. The empirical method refers to the
application of the mass-curve analysis [Rippl, 1883)
to the observed streamflow sequence. The experimental
method is based on the Monte Carlo technique in gene-
rating a large number of new hydrologic samples. The
mass-curve analysis is then applied to these samples
to assess the storage characteristics. The analytical
method utilizes mathematical theories to derive the
statistical properties of the most important variables
that characterize the storage.

An instructive example of water resources
development under adverse conditions is construction
of reservoirs in limestone regions. Karstified lime-
stone, as well as some other geological formations,
are known to have high water transmissibility. As a
result, significant natural underground storage may
be directly coupled with the surface reservoirs.
Examples of relatively large underground storage capa-
bilities coupled with man-made lakes are: the Lake
Powell on the Colorado River (USA), [U. S. Bureau of
Reclamation, 1974], the Libby Reservoir on the Kootenai
River (Montana, USA) [Coffin, 1970], the Lake Nasser
on the Colorado River (USA), [U. S. Bureau of Reclama-
tion, 1974], the Libby Reservoir on the Kootenai River
(Egypt, Sudan), and the Lake Bileca on the Trebisnjica
River (Yugoslavia) [Mikulec and Trumic] 1970]. The
account of effects of natural underground storage
capacity is virtually cost free. In addition, the
water of the underground storage is subject to minimum
evaporation.

A sound basis for evaluating the degree of use-
fulness of a storage project is a monetary performance
index which includes economic, social, and political
criteria. With the project output quantified, an
optimization scheme is usually applied to choose the
best alternative from a set of feasible actions.
These techniques frequently combine one or more methods
of storage analysis with an extensive use of computers.
Application of the optimization methods to analyze
storage operation under specific conditions is the
subject of this study.

1-2 Study Objective

The objective of this study was to develop a
mathematical model for determining the optimal policy

of water use from a single, multi-purpose surface
reservoir which is physically coupled with a natural,
fast responding underground storage space of signifi-
cant capacity. This objective is accomplished by a
dynamic programming scheme.

In order to account for the contribution of the
underground storage, an appropriate mathematical
description of the exchange of flows between the two
interconnected storages was necessary. The usefulness
af presently available models for groundwater flow in
an optimization procedure may be severely limited,
primarily because they require extensive computations.
For this reason, simple mathematical models are deve-
loped herein. This by no means implies that more
complex, other groundwater flow models are precluded
in achieving the objective.

Large quantities of water may flow out of a karst
aquifer. Since aquifers are fed by natural recharge,
the intensity of recharge may be very high. This is a
characteristic of aquifers in fissured rocks. In
addition to determining the optimal policy, a recharge
model for drainage basins in karstified limestones
and dolomites was developed as a complementary part of
the flow exchange model.

In the subsequent analysis the underground storage
is assumed directly noncontrollable, that is, there is
no controllable component entering into or coming out
of the underground storage. The underground storage
is controlled indirectly. Besides being dependent on
natural stochastic inputs to the system, the wunder-
ground storage depends on the behavior of the surface
reservoir controlied by making decisions concerning
its water release. Thus, the exchange of flows be-
tween the two interconnected storages is affected by
the surface storage operation.

1-3 Scope and Organization of the Study

The material presented in this study is organized
as follows: Chapter II is a brief review of litera-
ture. Chapter III defines the hydrologic system dealt
with in the underlying assumptions. The next four chap
ters represent detailed analysis of components of the
model used in the study: Chapter IV, with the mathe-
matical model for the underground storage; Chapter V,
with the mathematical formulation of the hydrologic
system and a model for the recharge; Chapter VI,
with the description of the system identification under
frequently encountered conditions; and Chapter VII,
with the dynamic programming solutions to the resource
allocation problem with equality and inequality
constraints. Chapter VIII describes procedures and
results in the application of the models, with two
sample problems under slightly different hydrologic
conditions solved. Finally, Chapter IX presents
concluding remarks and recommendations for further
study.

R Tl S
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Chapter Il
BRIEF LITERATURE REVIEW

2-1 Reservoir Storage

Reservoirs for flow regulations have been used
for several thousand years. The first attempt to
determine the size of a reservoir by a scientific ap-
proach can be traced back only to the last century.

The foundation of water storage analysis was laid

by W. Rippl [1883]. The size of the storage required
for water supply of Vienna was critically examined by
the method which soon became known as the Rippl-diagram
method. The technique has been used extensively
throughout the world since. The method is based on
the use of a time series realization, i.e., an observed
sequence of streamflow data representing inflow

into the reservoir. The storage capacity determined

by the Rippl-diagram method is that which provides a
sufficient supply over the periods of critically low
flows within the observed sequence.

No objection can be made to the use of the
observed streamflow sequences, for in many instances
it is the only, and cetainly the best, source of in-
formation available. What can, however, be objected
to is the manner in which the observed sequence is
used. It soon became evident that the Rippl method
when applied to an observed sequence of streamflows
may prove to be inadequate since the determined reser-
voir size will be correct if the streamflow observa-
tions during the reservoir lifetime were identical to
the sequence upon which the evaluation of the reser-
voir size was based. The probability that a realiza-
tion of a continuous time process will repeat itself
identically in any subsequent sequence is zero. Thus,
the selected reservoir size may be incorrect. To
account for the stochastic variation of annual flows,
it was suggested as early as the beginning of this
century [Hazen, 1914] that probabilistic concepts be
applied to streamflow. At that time probability was
not regarded as a legitimate branch of mathematics
[Feller, 1968], so that half of the century passed
before Hazen's idea received widespread recognition
and application.

Among early developments of the theory of reser-
voir storage, which utilized probabilistic methods to
determine water storage capacity, was that of Hurst.
The long time studies of the Nile River led to the
formation of an expression [Hurst; 1951, 1965] re~
lating the ratio of the mean range, R, and the standard
deviation of annual flows, o, to the time period of N
years over which a sufficient water supply is to be
provided by a storage capacity, namely known as the
Hurst equation,

R/go= G.61 872, (2-1)
Even though this expression was derived from the ob-
served data of several natural phenomena, it has become
controversial,

Advances in the theory of probability and mathe-
matical statistics and continuing attempts to apply
them to practical engineering brougth about new ideas
associated with the analysis of reservoir storage.
There is a large number of references contributing to
the development of new methods authored by Feller,
Spitzer, Hurst, Morran, Lloyd, Annis, and many others.
It is not the objective of this review to cite all
those who have contributed significantly in bringing
the theory of water storage to its present level.

A summarized description of a class of probabilis-
tic problems that usually arise in the theory of
storage was given by Morran [1959]. Another article
dealing with the same subject is due to Lloyd [1967].
Probabilistic treatment of hydrologic time series that
are determinative factors of the reservoir size and
its efficient operation, such as surplus, deficit,
range, run, etc., is described by Yevjevich [1965,
1972c], and Salas [1972]. Application of the probabi-
listic models within the framework of queuing theory
was described by Langbein [1958]. Later, Fiering
[1962, 1967] combined queuing theory and simulation
in the optimal reservoir design. More details con-
cerning various techniques of probabilistic reservoir
analysis are summarized by Roefs [1968].

A particular branch of applied mathematics that
has provided toels in planning and managing of water
resources systems is mathematical optimization. Pro-
babilistic and statistical methods have improved, and
their application to the description of the stochastic
nature of hydrologic processes has received widespread
recognition. The advances in computer technology
made economic the processing of large amounts of data
within a short time. As a result, not only was it
feasible to efficiently use the observed data, but
opportunities have been created for generating new
sequences of data according to the statistical proper-
ties and dependence structure inferred from historic
data [Yevjevich, 1972b]. Optimization models combined
with probabilistic methods and data generating techni-
ques, all based on computer capability, were seen as
potentially promising devices in analyzing various
aspects of water resources systems.

Various optimization schemes, linear and non-
linear, are applied to water resources at present. A
large number of problems in water resources belong to
the class of problems involving sequential decision
making, and these in turn "...lend themselves best to
analysis and solution through the application of the
dynamic programming,' [Buras, 1972]. Consequently,
as pointed out by Hall and Dracup [1970] and Buras
[1972], dynamic programming was demonstrated to be a
particularly useful technique in analyzing water
storage problems.

An extensive review of the methods and techniques
applied to reservoir planning and management is given
by Roefs [1968] and Croley [1974]. Numerous examples
of the application of different optimization schemes
to water resources systems of various sizes are given
by Hall and Dracup [1970] and Buras [1972]. Butcher
et al. [1969] used a dynamic programming scheme to de-
fine the optimal strategy of installation of a sequence
of water supply projects. Buras [1963] outlined
methods employed to obtain the optimal use of pumped
underground aquifer operated in conjunction with a
surface reservoir. Burt [1974] devised a method for
attaining the optimal management of groundwater re-
source in view of decisions concerning the timing and
the location of surface water developments. Hall and
others [1963, 1964, 1969] applied dynamic programming
to problems of reservoir design and operation. Gen-
erated sequences of dependent annual streamflow were
first used by Hall and Howell [1963] for analysis of a
single purpose reservoir. The method was later called
""generation-deterministic optimization-regression,"
[Roefs, 1968], and also "implicit stochastic optimiza-
tion'" (ISO) [Croley, 1974].



Performing the optimization over each of a number
of generated samples of data, several optimal returns
and the optimal policy corresponding to each of them
can be determined. From those it is possible to deter-
mine the following: (1) the operational rules, and
(2) the risk of failure to satisfy certain levels of
the demand or the risk of failing to generate a given
level of return. They also suggest that the selection
of the optimal reservoir size should be based upon the
results of computation performed for several arbitra-
rily chosen physically feasible reservoir sizes. It
should be noticed that this method uses a deterministic
optimization procedure to analyze the system with a
stochastic input, i.e., a generated sequence of stream-
flow. This perhaps explains the diversity of names
given to the method described.

Even though dynamic programming has been found
to be well-suited for the analysis of many water re-
sources systems, not all problems can be solved by
this method because of limitations of the technique.
The most frequent obstacle for the use of dynamic opti-
mization appears to be excessive computer time and,
particularly, computer memory requirements. Much work
has been done to alleviate the burdens usually asso-
ciated with stochastic dynamic optimization. Heidari
et al. [1971] described a method of discrete dynamic
optimization which considers a narrow, arbitrarily
chosen, band of feasible policies. The best policy
constrained by this band is selected by the method of
dynamic programming. Then, a new band around the
optimal policy is formed and a new optimal policy
corresponding to the new band is determined. The pro-
cess is repeated until the optimal policy obtained for
a given band remains unchanged for two successive
iterations. Although the procedure is essentially
iterative, it is claimed to be very efficient in terms
of both computer time and memory requirements, parti-
cularly for multidimensional systems. Another model
with a similar objective was developed by Croley [1974]
proposing the method of sequential stochastic optimi-
zation as an alternative to the existing methods. In
essence it combines two of the most frequently used
forms of dynamic stochastic optimization, eliminating
some of their disadvantages. The method is particu-
larly suitable for actual operation of water resources
systems.

In spite of the fact that the literature concern-
ing storage problems is prolific, no attempt has been
made to account for the natural underground storage
effects in analyses of the surface reservoir plamning
and operation, when the two storages are physically
coupled. In some circumstances, consideration was
given to the bank storage but only insofar as deter-
mining its magnitude -- the Lake Powell of the U. S.
Department of the Interior [1965], or to ascertain the
response of the basin storage to changes of the sur-
face reservoir -- the Libby Reservoir, Coffin [1970].

2-2 Specific Problems Related to Karst

Karst regions are characterized by unusual
features and extreme conditions which do not allow
conclusions as to what is typical or average for many
properties of carbonate rock [Stringfield and Le Grand,
1969]. Specific characteristics of karst watersheds
such as those related to scarcity of surface streams
and rugged topography were developed by natural pro-
cesses as a result of the presence of soluble rock,
carbonic acid, ample precipitation, rock fissures,
and favorable topographic settings [Le Grand, 1973].
As in almost all catchments the time of extensive

water occurrence in karst does not coincide with the
highest water demand. However, the problems are here
sharply accentuated by specific relationships between
water and soil.

High infiltration and low surface runoff are
hydrologic characteristics of most karstlands
[Sweeting, 1973]. As a consequence, underground flows
are large, often concentrated, sometimes reaching the
proportions of underground rivers. The underground
channels may converge and form extremely large springs,
as frequently occurs in the Mediterranean Karst. Karst
rivers can disappear as suddenly as they appear.
Another peculiar feature of karst regions are karst
plains (poljes) which are enclosed valleys with no
surface drainage. They usually act as retention basins
during rainy periods or snowmelt and experience extreme
water shortages during dry seasons.

It is clear that when the methods of classical
groundwater hydrology, developed for nonfissured
rocks, are used for evaluation of karst water re-
sources, the results may be misleading [Sweeting, 1973].
For that reason, as realized long ago, new methods ot
investigation in karst are needed. Many controversies
concerning karst underground water were centered about
the question, which has yet to be resolved, of the
existance of a water table. Nevertheless, the dis-
tinctive nature of karst hydrology was emphasized at
the Dubrovnik Symposium on Hydrology of Fractured
Rocks [Sweeting, 1973].

Due to the described geologic and hydrologic
conditions, economic and engineering problems related
to karstlands can, in summary, be said to result from:
(a) scarcity of surface water supplies; (b) poor
predictability of underground water resources; (c)
instability of cavernous grounds; (d) leakage of
surface reservoirs; and (e) unreliable waste dis-
posal, To resolve these problems, it was necessary to
understand environmental relationships which determine
the effects of engineering actions on the system.

These had to be learned for every particular case
through carefully planned, often elaborate, exploratory
work and actual construction of water resources sys-
tems. Many aspects of the encountered field problems
are described in the proceedings of the above mentioned
symposium. Additional recent references concerning
karst hydrology and geology can be found in publica-
tions by Stringfield and Le Grand [1969], and Sweeting,
[1973]. Extensive bibliography in the subject matter
is given by Herak et al. [1973].

During the last 25 years, a number of dams was
constructed in regions of Yugoslav Karst [Mikulec and
Trumic, 1972], and others are under construction or on
the drawing board. Much experience concerning con-
struction of reservoirs under karst conditions has
been gained. One important aspect of this experience
is how to successfully cope with potentially unusually
large reservoir leakage, which was sometimes thought
to be sufficient reason to rule out the construction
of reservoirs under these conditions. In recent years
it was realized that more comprehensive planning and
management of water resources systems in karst is
needed. The realization led to a joint U. 5. -
Yugoslav research project currently underway.
the framework of this project, it is desired to
investigate the aspects of underground natural storage
physically coupled with the surface storage. This is
intended to contribute to a better understanding of
effects of the nmatural underground storage space on
surface storage in karst areas.

Within



Chapter I1I
SYSTEM DESCRIPTION AND GENERAL APPROACH TO THE PROBLEM SOLUTION

3-1 Description of the System

Consider an overall hydrologic system consist-
ing of two subsystems: a surface subsystem and an
underground subsystem which are physically interrelated
in such a manner that water can flow from one subsystem
to another in both directions. A simplified schematic
representation of such a system is given in Fig. 3-1,
where the surface subsystem is denoted by S and the
underground subsystem by V. The dashed line in Fig.
3-1 can be thought of as the boundary of the total
system denoted by 0.

Q;(t)
________ —————— —— 4
{_ Qlth
| ac(t) | ap(t) {ag() q,(t) I
|
: qu(1]>0 1
I S(t) g,(t)<0 Vi) |
I |
| apit) | gelt) | ags(t) qqult) |
| 1 A |
| |
| e = iy WSEe, s i RS B 1

Qq(t)

Fig. 3-1. Schematic Representation of a Hydrologic
System Composed of Two Subsystems.

The water budget equation of the overall system
can be expressed by the simple relation

. . 9a2(t) :
Q; (1) - Q,(t) = S, (3-1)
in which Qi(t) = the rate of input into the system,
Qo(t] = the rate of output from the system, and
dii(t) = the rate of change of the system storage, all
three as continuous functions of time t.
The total input into the system, Qi(-J, can be

represented as the sun of its four major components as

depicted in Fig. 3-1, namely

Q; (1) = qc(e) + g4(c) + (1) + q.(2), (3-2)
in which qc(t] = the direct channel inflow into the
surface subsystem, qd{t) = the direct surface inflow
into the surface subsystem, qp[t) = the inflow re-

sulting from precipitation over the water storage sur-
face area, and qr{t] = the recharge to the underground

subsystem.

Similarly, total output from the system is the
sum of the components

Q,(8) = () + q (1) + q (t), (3-3)

in which qb[t) = the channel outflow from the surface
subsystem, qe(t) = the evaporation from the water sur
face area of the surface subsystem, and qg{t] = qgs(t)
* qgu[t} = the loss of water from both the surface sub-
system, qgs(t), and the underground subsystem, qgu{t),
respectively.

Under the given description of the system, the
rate of change of the system storage, dfi(t)/dt, at the
right-hand side of Eq. 3-1, consists of a summation of
the corresponding changes of the surface subsystem
dS(t)/dt and the underground subsystem dV(t)/dt,
namely

d_g_it) 52?{ [S(t) + v(r) ] = 5‘%}-}- * %[‘tl - (3-4)

In Eq. 3-4 S(t) = the volume of water content in the
surface subsystem, and V(t) = the total volume of
water stored in the underground subsystem.

Substituting Eqs. 3-2 through 3-4 into Eq. 3-1,
the basic water budget equation becomes

9(8) + qg(8) + q (8] + (8) - g (©) - g, (1)-q®)

_ds(t) |, dv(t)
s e (3=5)

In addition to the information concerning the
components of surface flow and atmospheric events, a
description of a complex hydrologic system also re-
quires that the behavior of the underground subsystem
be described. More specifically, the last term in
Eq. 3-5, dV(t)/dt, must be mathematically defined in
such a way that it describes the response of the under-
ground subsystem to the other flow components.

Sufficiently accurate models of the underground
flow available at present appear to be very complex
and somewhat burdensome to compute [Freeze, 1971]. In
addition, under the condition of nonexistent regular
water table in karstified aquifers [Sweeting, 1973],
these models are inapplicable. Thus, a simplified and
convenient model is necessary.

The continuity condition of the underground sub-
system must be satisfied, namely

4 (8) - a,(8) - qg, (1) = 4G, (3-6)

where qu[t} = the exchange flow between the surface
and underground subsystems, qgu(tJ = the water loss
from the underground subsystem, while qr(t] and

dV(t)/dt are as defined previously. The mathematical
formulation of Eq. 3-6 is depicted in Fig. 3-2.

Both the recharge to the underground aquifer,
q.(t), and the loss, q_ (t), are non-negative time
functions. The lattergcomponent is virtually unmeas-
ured and hopefully insignificant. Hence, it is
often dropped from computation. This need not be true
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Fig. 3-2. Schematic Representation of the Flow

Components of the Underground System.

under all conditions. For example, water leakage may
increase significantly after a dam is constructed in
areas of specific geologic conditions such as karsti-
fied 1imestone. However, when this is likely, measures
are taken to prevent excessive leakage. In this study,
q. . (t), is assumed controllable in the sense that it
cin be reduced to a negligible quantity by grouting.
Thus, Eq. 3-6 can be reduced to

qr(tJ = qu(t) = g;éﬁl *

The flow components of both the underground and
surface subsystems change simultaneously with time. De-
pending upon their mutual relationships, various hy-
draulic conditions can be found. These conditions will
determine whether the exchange flow, (t), will be
either positive or negative. For example, when qu[t)-
4, < 0, the flow direction is from the surface sub-

(3-7)

system into the underground subsystem, so that the
underground water content increases since qr(t) -

qu[t} > 0, hence dv(t)/dt > 0. However, when qul[t)-=
q; > 0, the flow direction is from the underground sub-

system into the surface subsystem. The rate of change
of the former, dV(t)/dt, will depend on the magnitude
of the recharge qr{t] so that: (a) the water con-

tent of the underground subsystem V(t) increases
whenever qr{t) > qu{t} i.e., dv(t)/dt » 0; (b) V(t)
remains unchanged whenever qr(tj = qu{t), namely
dv(t)/dt = 0; and (c) V(t) decreases whenever qr(t)
< qu{t) resulting in dv(t)/dt < 0.
qu{t} = 0 whenever both the following conditions are
satisfied: qr[t) =0 and dV(t)/dt = 0.

In addition,

3-2 Natural and Modified System Conditiuns

The system depicted in Fig. 3-1 can be thought
of as a body of surface water representing the surface
subsystem, while the underground subsystem consists of
porous geological formations which, depending upon the
hydraulic conditions of the system, can be filled
either with water or with air. The quantity of water
stored in the underground system has often been called
the bank storage. This term will be used interchange-
ably with underground subsystem or underground storage
throughout this paper.

With regard to the research objective, it will be
necessary to distinguish between the system under
natural conditions and the system under modified con-
ditions. The hydrologic system dealt with in this
paper, under natural conditions, consists of a river
channel and the bank storage along the considered river
reach. Under the modified conditions the system is
comprised of a man-made surface reservoir and a natural

underground storage physically interacting with the
surface storage. From the point of view of application
of the techniques developed in this paper to a hydro-
logic system, the natural conditions correspond to
the period of reservoir planning while the period of
reservoir operation is characterized by the modified
conditions. Attempts are made to extract as much
information as possible from the data available during
the planning stage. It is, however, clear that com-
plete knowledge of the modified system in most cases
cannot be obtained until the modified conditions are
created. Hence, in order to apply the results of in-
vestigations of the natural system to the modified
system, some reasonable assumptions will have to be
made concerning the manner and the extent to which the
system modification will affect the system behavior.

To outline the change of hydrologic processes
caused by the system modification, the components of
the budget equation should be considered. First, assume
that the underground subsystem can be neglected. There-
fore, the recharge, q,(t), and the rate of change of
the underground subsystem, dV(t)/dt, can be dropped
from Eq. 3-5. Remembering that the loss of water
from the natural system, qg[t}, is assumed to be zero,
then

98] + ag(e) + ay(t) - ay(1) - qu(t) = S
(3-8)

is obtained. When such a system is modified, that is
when a surface reservoir is constructed, some components
on the left-hand side of Eq. 3-8 may be affected. Yet,
it is usually possible to account for the resulting
changes with a satisfactory degree of accuracy since
these processes are governed primarily by the hydro-
meteorological conditions unaffected by the system
modification.

Consider Eq. 3-8 term by term. The channel inflow,
q.(t), obviously will not be affected by a reservoir.
Tﬁe components of the direct surface inflow, qd(t},

the inflow due to precipitation, (t), and the evapo-

ration, qe(t}, will, however, be different for the two

conditions. Nevertheless, they are proportional to the
areas of the system surface over which they occur.
The qp(-} will increase since the reservoir water area

increases. Thus, for a given quantity of precipitation
it can be conveniently described as

qp(t) = p(e)A (2], (3-9)

where p(t) is rainfall per unit area, and A _(t) 1is
area of the reservoir surface at the given timg, t.
The direct surface inflow, qd(t}, will, however, be

smaller than for the natural system because part of the
area drained directly into the system is now submerged
under the reservoir. Likewise, it can be defined in
terms of the rainfall and the direct drainage area
Rd(t) which changes with time, namely

qq(8) = cgp(tIAy(®), (3-10)

where ¢4 = @ constant parameter.

Increase of evaporation is probably the most
significant change resulting from the system modifica-
tion. However, it, too, can be determined when the
evaporation from a unit surface is estimated. Since



this remains unchanged for both conditions, it can be
written

9, (t) = e(t)A_(1), (3-11)
where e(t) = the evaporation from a unit area of water
surface, with Ar(t) and qe(t) as defined previously.

The remaining two components of the budget equa-
tion, namely qb{t] and dS(t)/dt, become, under the

modified conditions, the controlled reservoir release
and the rate of change of reservoir storage, respec-
tively, With the knowledge of the previously described
components, and when a control is exerted over either
qb(t] or S(t), the other component--S(t) or qb(t]--

is obtained from Eq. 3-8. Thus, as demonstrated, in-
sight into the natural system can, to a large degree,
be extended to the modified conditions.

When the assumption underlying Eq. 3-8 does not
hold, i.e., when the contribution of the underground
subsystem is significant, it is considerably more dif-
ficult to describe the system. Even when all the
previously discussed extensions are possible, it is
necessary to know the rate of change of the underground
subsystem, dV(t)/dt, and the recharge, q_(t). The
latter is not affected by the system modification, and
a reasonably accurate model can be developed to des-
cribe it. However, the dV(t)/dt component, besides
being expensive to accurately assess, may be signifi-
cantly affected by the construction of the reservoir.
In addition, the optimization of the reservoir opera-
tion requires that the underground volume, V(t), be
simulated, so that the state of the system resulting
from any given (or assumed) decision can be evaluated.
To accomplish the desired goal, Eqs. 3-5 and 3-7 are
combined in a model capable of simulating the exchange

flow, qu(t], as a function of S(t) and V(t), namely
ds dv
Qe *9g ¥ Gy ¥y = By - G = 4~ * 7 » B-128)
dv
G- A g (3-12b)
q, = qu(v_sj " (3-12¢)

where for reasons of simplicity the argument, t, is
omitted.

The above mathematical formulation is rearranged
to accommodate the use of discrete variables. Intro-
ducing Eq. 3-12b into Eq. 3-12a and assuming that the
exchange flow, qu(t], is properly defined by the

system states, S and vt—]’ at the beginning of a

t-1

given time interval, t, the following is obtained

e < d P u_ b e g
Sp * B PR TR TG G - G - By (1)
_ R =
Vt = Vt-l + qt = qt - (3-13b)
Q5 = 4 S gi¥.q) 5 (3-13¢)

wherein the correspondence of symbols of Eqs. 3-12 and
5-13 is obvious. This mathematical description of the
system is depicted in Fig. 3-3. However, when the ex-
change flow cannot be adequately described by the sys-
tem states at the beginning of a given time interval,
the resulting states, St and Vt, must be used to

u

evaluate q,- Then, the mathematical formulation of

the system becomes

d b
S, =8 ¢ Qg ¥ Qy *AE t - q - G - ag (3-14a)
" o G 3
Ve SV = e (3-14b)
C =B sV 38 %) 4 (3-14c¢)
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Fig. 3-3. System Diagram When the Exchange Flow q:
is a Function of the States at the Be-
ginning of the Given Stage t.

which is represented graphically in Fig. 3-4. It should
be noticed that an iterative procedure is required to
evaluate q% according to Eq. 3-14c. It should also

be observed that in both cases, evaporation is regard-
ed as independent of the surface subsystem state, S,

3-3 Brief Outline of the Problem Solution

Optimal operation of a water storage reservoir is
based on some optimal policy of water release. Find-
ing the optimal policy requires a hydrologic and a
compatible optimization model. Each of these two
models is further subdivided into two parts: the
hydrologic model consisting of the surface flow model
and the underground flow model, and the optimization
model comprising the economic model and a computational
algorithm.

The result of modelling as a totality depends,
gvidently, on many factors associated with complexity
and compatibility of the models involved. For example,
an oversimplified hydrologic model may offset the
accuracy of results that can be achieved from a very
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Fig. 3-4. System Diagram When the Exchange Flow qg is a Function of the States at Both
the Beginning and the End of the Given Stage t.

complex and computationally expensive optimization
model, or conversely. On the other hand, if both

models are too complex, computation may not be feasible.

The optimal policy can be based on evaluation of
either benefits or losses resulting from the release
of water in successive time intervals and the alloca-
tion of water to various economic activities. In this
study, the optimal policy is founded on the gross
benefits.

Reservoir optimization in many cases utilizes the
year as the time increment. This treatment is only
satisfactory for large surface reservoirs where the
total annual inflow represents a relatively small frac-
tion of the reservoir capacity. This approach may
result in significant errors in optimal policy when
applied to small or medium size reservoirs. The possi-
ble errors may be accentuated by large seasonal varia-
tions of river flows and/or demands. In addition, the
optimal use of coupled surface and underground storage
requires evaluation of the optimal policy over a finer
grid of time points than a year. This is due to the
fact that the water stored in the underground subsys-
tem is not necessarily available for use at a given
time. The delay in availability, as demonstrated in

Appendix A, may in some karst areas be relatively small.

In that case, points even a month apart would not
properly account for the effects of underground storage
capacity.

Out of the four models mentioned, only two will
be dealt with in detail: the underground flow model
and the computational algorithm. The economic model

and the surface water model will be treated here only
to the extent necessary to incorporate them into the
more complex hydrologic and optimization models.

The economic model is treated only peripherally.
However, in order to avoid ambiguities, the assump-
tions required to incorporate the economic into the
optimization model are outlined. First, the economic
projections over the project lifetime are assumed
known. As a part of this assumption, it is further
implied that values of water (x) to each potential
user (i) such as irrigation, municipal and indus-
trial supply, power generation, and low flow augmenta-
tion, are determined and given in terms of individual
return functions, gi(xi), for i =1,2,...,n, where

n is the number of economic activities. The return
functions, gi(xij, may change with time in a periodic

manner. The return functions of those economic
activities where the return depends on the quantity of
water delivered and the general state of the system
(reservoir size, head, etc.) are given for different
reservoir sizes. Thus, the effect of the system size
is accounted for.

Dynamic programming, which is to be used in the
computational algorithm, requires that selection of
the best returns be independent of the previous deci-
sions. The returns from agriculture, according to
Hall and Dracup [1970], depends on the time of deli-~
very. However, in a recent study, Twyford [1973]
indicates that for some crops, in all but very drastic
cases of water shortages, the timing of water delivery
may not be as critical as previously thought. Based



on these considerations, the dependency of water value
on timing of delivery is not considered in the follow-
ing optimization procedure with the exception of the
known constraints imposed on the lower limit of irriga-
tion demands.

The natural phenomena affecting water resources
systems are stochastic in their nature. Furthermore,
the reservoir outflow is subject to the uncertainty
inherent in water demand and other economic factors.

To cope with these problems within the framework of
optimization techniques, two basic approaches were
applied in the past: deterministic optimization and
stochastic optimization. Even though deterministic
optimization is inferior to stochastic, it is frequently
applied because of its convenience.

Two types of stochastic optimization are in common
use. Classical stochastic optimization methods, or,
as called by Croley [1974], explicit stochastic opti-
mization (ESO), are straightforward techniques. They
consist of evaluating the expected optimal return from
the known return function and inflow probabilities. In
dynamic programming, which is the most frequently used
technique in water resource problems, it was found
that the computational requirements quickly increase
[Roefs, 1968; Croley, 1974] and it becomes virtually
inapplicable under some circumstances [Hall and Howell,
1963]. The ESO requires two state variables for each
storage reservoir incorporated into the system [Roefs,
1968]. The number of state variables increases by the
square of the number of storage reservoirs. The second
difficulty is due to the serial dependency of hydro-
logic events. The time series must be described by a
set of conditional distributions. This requires the
manipulation of large matrices of conditional proba-
bilities. The problem is accentuated as the time
intervals become shorter since the dependency links

between the variables discretized over short time
periods grow stronger. Thus, larger probability
matrices must be used to describe the processes ade-
quately. Also, a large number of points may result in
excessive computer time requirements.

While the first shortcoming of the method is not
restrictive for the problem at hand, the difficulty
resulting from the dependency of the time series is a
serious disadvantage. The discretization must be done
over relatively short time periods and probabilities
must be conditioned not only on the past events of the
same time series, but also on the past and present
events of the other series.

To resolve the impasse into which ESO usually
leads, an alternative method was proposed by Hall and
Howell [1963]. The method was subsequently called
generation-deterministic optimization-regression
[Roefs, 1968] and also implicit stochastic optimization
(I1S0) [Croley, 1974]. In a particular example Croley
[1974] showed by contradiction that the results obtain-
ed by the two methods do not agree, as they should not,
because ESO gives the expected value of the return,
while ISO gives the optimum return from a deterministic
input.

Unlike the method due to Hall and Howell [1963],
the research detailed herein is based on the genera-
tion of a precipitation series and thence streamflow
and recharge. These are then used as deterministic
input to ascertain an optimal policy. The resulting
return is a random variable and can be used within a
stochastic framework to assess its statistical

properties. Further, these can be used in the manner
of Hall and Howell to determine operational policy and
optimal reservoir size.



Chapter IV
CONJUNCTIVE USE OF COUPLED SURFACE AND UNDERGROUND STORAGE CAPACITIES

4-1 Background Information

As given by Eq. 3-7, the underground subsystem can
be described by the following mathematical relation

g (0) - q (1) = T (4-1)

where qg[t) and q, (t) are the recharge to the sub-
system caused by prec1p1tat10n and the underground ex-
change flow between the two subsystems, respectively.
dv(t)/dt 1is the rate of change of the water content,
V(t), of the underground storage.
equation combined with various assumptions concerning
the functional relation of qu(t) and V(t), has been

extensively used to describe the river hydrograph.
Hydrologic literature is abundant in practical appli-
cations of the model given by Eq. 4-1, but less so in
theoretical considerations of the 4, (t] to V(t)
relationship.

A very generalized analysis with regard to the
type and method of solution of the basic differential
equation associated with storage problems is given by
Yevjevich [1959]. The study covers a wide range of
situations that usually arise in practical problems.
In the cited work the following assumptions were made

m

Su=aH 5

(4-2)

d (4-3)

q = bH",
where H = H(t) is the water table elevation from some
reference point, q_ was defined previously, and a, b,
m, and r are constants. In Eq. 4-2, S is some char-
acteristic of the underground volume. Its relation
to V and its precise definition is given later (see
Eq. 4-39). Notice that for simplicity of notation,
the argument t is dropped from Eqs. 4-2 and 4-3.
Nevertheless, it is implied that q, and Su are

continuous time functions unless specified otherwise.
Equations 4-2 and 4-3 indicate that both the water
content of a reservoir and the outflow from it are
functions of a single variable H. Combining Eq. 4-2
and 4-3 gives

1n

5, "y »

u cu [4’4)

where ¢ = bn!a, and n = m/r. When Eq. 4-4 is differ-
entiated with respect to time and introduced into
Eq. 4-1,

n-1

nq, dqu * c(qu - qr) dt = 0 (4-5)

is obtained. Equation 4-5 is derived under the assump-

dsu av -n
tion that T g The substitution 9 =¥ and
= (2n-1)/n = 2 - 1/n=2 - r/m yields
y' +'cqu2 - =0, (4-6)

which is the differential equation of the water storage.

It should be remembered that y 1s a continuous

function of time. The above differential equation was
integrated analytically by Yevjevich [1959] for three
basic cases: (a) the recharge equal to zero, qr = 03

(b) the recharge a constant different from zero,

This basic continuity

q » # 0; and (c) the recharge a simple function,

T

a, £(t), of time t.
for the three listed cases and a range of values of k
can be found in the cited reference. A few selected

solutions frequently used to analyze hydrologic sys-
tems are presented below.

A detailed solution of Eq. 4-6

(8 q. =0
= " _ 1/2 .-2 3
k=0+n-=1/2 g = quotl teq t) 4 (4-7)
-ct
k=1=n=1 q =g .e (4-8)

uo

Both relationships have been used to analyze the re-
cession part of the streamflow hydrograph or the
spring discharge hydrograph, sce for example Knisel
[1972], and Burdon and Safadi [1963].

() Ay = q, # 0

t/R 2
22 - u (4-9)
k=0>n=1/2 q =4q ( ) B
—_— i u TO et/R R
i 3 /2 _ 1/2
where R = =q . and w='ro _ ‘uo
W2, L2
U ro ™ %o
k=1l+n=1 gq =9q_ +(q -9 ye™ t, (4-10)
—_— u TO uo To

where q and q are the initial values of g
ro uo u

The form of Eq.

by Dooge [1973] and others. Caution should be exer-
cised when using the above expressions; the time
origin t = 0 must always coincide with the time when
the uniform recharge q, = q,, commences.

and Qo respectively. 4-10 was used

It should be noticed that only in the two pre-
sented cases is it possible to obtain q, as an ex-
plicit function of 90’ Yp0? and t. In all other

solutions to the differential equation 4-6, a numer-
ical procedure is required to evaluate Q, for the

solution is given in terms of the functional relation
= T(qu, Qo qro)' This, perhaps, explains the

reason hydrologists have resorted to a relatively
limited number of computationally convenient models
(mostly linear), despite decreased accuracy.

4-2 Basic Assumptions in Model Development

In the further model development, a proper de-
finition of the underground storages is required. This
definition is based on several assumptions that are
listed below. They may create difficulties of a
practical nature in model implementation. However,
from a theoretical point of view these assumptions are
not restrictive. The assumptions are:

(1) The total volume of water stored in the



underground storage subsystem up to the horizontal
water level of the surface storage subsystem can be
described by a function of effective porosity, y, and
the water level of the surface storage subsystem,
h(t), or by a set of discrete values in a tabular form
as

W(t) = W[y, h(t)] . (4-11)

(2) The state of the underground storage sub-
system, i.e., the total water content in the subsystem
can be described by a mathematical relation as a func-
tion of effective porosity, y, the water level in the
surface storage subsystem, h(t), and an m x 1 vector
of observations of the water table levels, H(t), at m
points of the underground storage subsystem (or by a
set of discrete values in tabular form) as

V(t) = V[y, H (t), h(t)]. (4-12)

(3) The total water content of the surface
storage subsystem can be described by a function of
the water level, h(t), in the subsystem (or by a set
of discrete values in a tabular form) as

§(t) = S[h(t)]. (4-13)

Equations 4-11 through 4-13 describing the states
of the two interconnected subsystems as continuous
functions of time are based on the working scheme pre-
sented in Fig. 4-1. It should be observed that Egs.
4-11 and 4-13 provide for a unique correspondence
between the W(+*) and S(+), so that W(t) = W[S5(t)].
For simplicity of notation, the variables defined in
Eqs. 4-11 through 4-13 will be continuous functions of
time unless specified otherwise, so that the argument,
t, can be omitted.

7 s

Impermeable Barrier

Fig. 4-1. Definition of Basic Variables of the

Subsystems.

From the preceding description and Fig. 4-1, it
is clear that Eqs. 4-11 and 4-12 imply an impermeable
hiarrier separating the underground storage subsystem
from the remaining portion of its own and surrounding
drainage basins. It seems justified to emphasize also
that the water table of the underground storage sub-
system does not necessarily have to be assumed a
smooth surface, Additional necessary assumptions are:

(4) The effective rock porosity, y, of Egs. 4-11
ind 4-12 can be assumed either uniform over the whole
nunderground subsystem or it can vary from one part of
the subsystem to another. In the latter case, the
rock prosity, vy, may be described by an m x 1 vector
of values, corresponding to the vector H(t) of Eq.
4=12. It is also assumed that y can be determined

10

either by a geophysical method, which is more desirable,
or by means of the system identification.

(5) An area around the surface storage reservoir
is covered by a number of -observation boreholes in the
permeable underground storage and a vector of observa-
tions, H(t), exists over a period of time.

(6) From the observed sequences of qc{t}, qd{t),

qp[t). q,(t), q (%), qs,{t), and dS(t)/dt, the time
series of qu(t} may be determined from the basic

budget equation (see Eq. 6-8).

(7) Observations of the precipitation series,
p(t), at the set of rainfall gauging stations covering
the drainage basin are available.

(8) Observations of the state of the surface
subsystem, S(t), are recorded as a function of the
elevation, h(t), during both a time period prior to
the reservoir construction and an initial time period
of reservoir operation. It should be clear that de-
pending upon the availability of the data concerning
the surface subsystem, two different situations can
arise. First, if the records prior to the reservoir
construction (natural conditions) are available, all
the conclusions--whatever their accuracy--may be ex-
tended up to and including selection of the reservoir
size. When only the records of the modified system
exist, it is only possible to determine the optimal
policy and operational rules.

4-3 Mathematical Model of the Underground Subsystem

The first part of this section deals with the
derivation of the mathematical expressions needed to
formulate the proposed model. The second part uses
the relations derived to establish the final form of
the model. Assumptions concerning the interrelation-
ships of the two subsystems are outlined whenever
appropriate.

Preliminary Mathematical Derivations. 1 gypse-
quent considerations of the model development, the
knowledge of the rate of change of volumes described
by Eqs. 4-11, 4-12, and 4-13, with respect to both the
time and the elevation, is required. They can be ex-
pressed in the following forms:

dw _ 9w dh _ dh =
VD T"w&"Pa®: it
in which Do aW[y,h(t)]/3h;
y E. [ ! v dh
dt aH dt = 3h dt
T dif dh .
= Bl e, T (4-15)
T T
with [g,m] = {aV[y,H(t), h(t)]/3H} and
Dyp = 3VIy, H(t), h(t)]/3h;
and
dS _ 23S dh dh
 FE"mat " Ohar’ Ll
where Dsh = 35[h(t)]/3h .

Evidently, D of Eq. 4-16 represents the hori-
zontal area of thé surface storage sybsystem for the
given elevation h(t). Similarly, th of Eq. 4-14 is

the effective horizontal area of the underground
storage subsystem at the given elevation h(t). These
areas multiplied by the rate of change of elevation
with respect to time, dh(t)/dt, give the rate of



change of respective storage subsystem volumes with
respect to time.

D and D

=VH Vh
difficult to visualize. Nevertheless, they have the
same physical interpretation as th and Dsh’ that

is to say that gvH represents the rate of change

the volufl V(t) when the vector H(t) is changed
for a unit vector and h(t) is kept a constant. By
the same token, DVh is the rate of change of the

volume V(t) when h(t) is changed by unity while
the vector H(t) is kept constant. Clearly, from this
discussion, the total rate of change of the volume
V(t) 1is as given by Eq. 4-15.

Values of of Eq. 4-15 are more

of

To assure the usefulness of expressions given by
[gs. 4-14 through 4-16, the following remark is needed.
From Eq. 4-16 dh/dt can be written as

.d-]l = 1 dS . qu(t) = Q{tJ

TS ’ (4-17)
dt Dsh dt Dsh
in which Q(t) is (see Eq. 3-8)
Q(t) = q(t) + q(t) + qg(t)

- qc(tJ - qd(t) = qp{t) ’ (4-18)

with all variables defined in Section 3-1. Introduc-

ing the right-hand side of Eq. 4-17 into Eq. 4-14 gives

dw

& . P-‘-‘-’lt (®) - Q(t)]
& "D, e

=R [q,(t) - Q)] , (4-19)

with Rus = th/D’h .

From another point of view, the total water con-
tent of the underground storage subsystem, V(t),
changes with time by reflecting the prevailing hydrau-
lic conditions. As deduced by simple reasoning, the
total change of the volume V(t) is comprised of two
factors: (1) flow from the underground storage sub-
system to the surface storage subsystem (or converse-
ly), denoted by

dv

u
T g Lt) (4-20)

and (2) the total recharge to the underground storage
subsystem, namely
dvr
ax T qr(t) - (4-21)
The sum of Eqs. 4-20 and 4-21 yields
dv dv
\'J
il a2 WO RO
= -[q,(t) - q.(8)] , (4-22)

which is exactly Eq. 4-1. Its solution was discussed
in Section 4-1. However, in general, it will no longer
be possible to assume that the exchange flow, q , de-
pends only on the total content of the undergro&nd
storage subsystem. Instead, as outlined in the follow-
ing sections, 9, depends on both the V(t), and the
W(t).
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Derivation of Mathematical Model. The basic
equations of the model of conjunctive use of surface
storage and underground storage are derived in this
subsection. Let the exchange flow, 9 be written as

Q" F[v(t), W(t)] . (4-23)

where V(t) and W(t) were defined by Eqs. 4-11 and

4-12. Differentiation of Eq. 4-23 with respect to
time gives

Wy | EV(R), W] L AV IF AN gy

at dt 3V dt oW dt -’

From Eq. 4-24, after rearrangement, dV/dt becomes

By _kaw M oaw
dv _dt " Wdt _ dt " CFW dt
. , (4-25)
dt aF D
W FV

with the abbreviated symbols in Eqs. 4-24 and 4-25
being

L OF _ AF[V(t), W(t

Opy * 3V W (4-26)
and
O _ BE[V(), W(t)] "
Dew = oW 7] . C4-27)

Substituting the right-hand side of Eq. 4-19 for dW/dt

in Eq. 4-25 yields
g!-—ci?-DFl [ﬁ“qu-R'SQ]
dt D,

Equating the right-hand side of Eq. 4-22 to the
right-hand side of Eq. 4-28 gives

. (4-28)

dq
u
T~ v Rus % Dy Ry @
= _DFV [qu e qr] » (4‘29]
from which it follows that
dq D
U, . W
T " Ppill - 5o Ryglay
FV
D
FW
+=—R Q-4q1}. (4-30)
DFV WS T
Denote DFHJDFv by va. and vanws by R, then
dqu
T " Dyyl-Rig, + Ry -a ], (4-31)
or with (1-R) taken out of the brackets,
dq
u o e R :
;T - OByl ¢ TRQ- TRyl - @52

Further simplification of Eq. 4-32 is possible by
denoting

R (4-33)
R
= ﬁ = ¥R , (4-34)
and DFV
R ] DFV[I-R) e (4-35)
so that Eq. 4-32 finally becomes



dt e e[qu + oQ = 'J-'qr] » (4—36)

in which, it should be remembered, 4y Q, and q,, as

well as ©, ¢, and {, are continuous functions of time.

The differential equation of the form given by Eq.
4-36 can, under certain conditions, be integrated ana-
lytically. The number of cases in which this is
possible is limited. These specific conditions are
examined in the following section.

4-4 Integration of Basic Differential Equation

It is clear that Eq. 4-36 describing the flow
between two interconnected storages is much more com-
plex than its counterpart Eq. 4-1 that describes the
outflow from a single reservoir. It should be ob-
served that Eq. 4-1 is derived for modelling a natural
hydrologic system.

In general, the exchange flow, qu{t}, is a con-

tinuous time function, hence it is expressible in terms
of an infinite series of polynomials of the form

fj v,w) = [fﬂf,l\‘)llI , namely

t) = F(V,W) = g,
q,(t) v,w jgchwa’"]
" &

cjtf(v.wnj .
j=1

(4-37)

The use of only the first few terms is needed to
achieve a reasonable approximation of qu(t), say

j =1,...,m, so that Eq. 4-37 can be written as

n 3
q,(t) = j;l cj[f(\r',th]J .

(4-38)

Prior to attempting the integration of Eq. 4-36,
it is shown that Eq. 4-5 represents a special case of

q. 4-36. This exercise also helps to select the pro-
per and physically justifiable form of £(V,W)., To
that end let

Su{t] =(V-W), (4-39)

where, for the natural conditions of the hydrologic
system, W = constant, so that dW/dt = 0. Combining
the derivative with respect to time of Eq. 4-39 with
tg. 4-22 gives

ds
u dv
Tl i —Iqu(tJ w qr{t}l . (4-40)
Furthermore, let
= 1/“ .
q,(t) = (52", (4-41)

from which, after differentiating with respect to time
and inserting into the right-hand side of Eq. 4-40 in
place of dSufdt,

%y 1/ gi/na By
dt n u dr
< ulogh/B UBIB o g (4-42)

is obtained. Eliminating Su from Eqs. 4-42 and 4-41
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yields
=]
nag " dq + c(q, - q)dt = 0, (4-43)
which is exactly Eq. 4-5.

Equation 4-43 can also be obtained from Eq. 4-36
directly. Remembering that W = constant, it follows
from

a, = FV,M) = /P sl/m_ Im gy yln ‘ (4-44)

that
3F _ 1 1/n (I-n)/n _ 1 1/n .(1-n)/n 5
v "a¢ BN BC % y K448
and
;0. (4-46)

With B8F/8W = DFw =0, Rw = DF':\‘/DI-'V = 0, so that

R = va = 0, it follows that

6 = aF/av = = /P sfl"“)/“, (4-47)
¢=0, (4-48)
and
p=1. (4-49)
When Eqs. 4-47 through 4-49 are substituted into
Eq. 4-36

dq, 1 1/n _(1-n)/n
T - %

(q.u-qr)

This is Eq. 4-42 from which Eq. 4-43 was

(4-50)

is obtained.
derived.

From the preceding discussion it appears that the
function £.(V,W) which is to be used for the des-
cription of’ the exchange flow, q,, under modified con-
ditions ought to contain the difference term (V - W)
found in Eqs. 4-39 and 4-44 which are used to describe
the underground flow under natural conditions. Indeed
this is an appealing and physically sound form since,
remembering that both V and W are nonnegative time
functions, it satisfies the following three conditions:
(a) q.= 0 when V =W; (b) L9 > 0 when V > W;

and (c) TR 0 when V < W,

Since the water stage oscillation of a vast
majority of rivers is relatively small, the assumption
that the volume W = constant adopted for hydrologic
systems under natural conditions is a reasonable ap-
proximation of hydraulic conditions. Except in
special cases outlined later, this assumption might
not be generally valid for a modified system where
the water level of a surface reserveoir can vary signi-
ficantly enough to affect the exchange flow. This
leads to the conclusion that an additional factor
should be included in the function f,(V,W). For
that reason, consider the form W{V-N]J which seems to
be able to satisfy the requirements. The above stated
conditions (a) through (c) still hold for this
form. Furthermore, for a constant value of the dif-
ference, say (V - W) = constant, it gives an in-
creased exchange flow, q , as W increases and
conversely, which is a d¥sirable property of the
function fj(V,W). In addition, the proposed form

bears some resemblance to the formula describing the
underground discharge into a gallery from an uncon-



fined aquifer (for example see V. T. Chow [1964], pages
13-13 and 13-14). Hence, for the purpose of further
discussion, the function f£(V,W) is assumed to be

£V, W) = W v-w” (4-51)

with A and v being constant parameters to be de-

termined for each particular system. With Eq. 4-51,
the exchange flow, q,» can be expressed as
m g
9 = FOLW) = [ [£(V,m))]
J=1
m A L
= ] Ww-w), (4-52)
j=1.
where Cj (j =1,...,m) is a set of constant para-

meters satisfying the mathematical conditions for con-
vergence of the series Eq. 4-52.

Since a particular case of the integration of Eq.
4-36 will involve the relation between the volumes W
and S defined by Eqs. 4-11 and 4-13, reference is
made to the statement after Eq. 4-13, namely that

W(t) = W[S(t)]. Based on this, some modification of
Eq. 4-14 is needed. Combining Eqs. 4-14 and 4-16
. anas . PR 4-53
dt 35 dt 23S 3h dt g ¢ )
. . ; " s 3
is obtained, which implies th =33 hﬁ-so that
D
w aW 35 " *E‘ 4-54
Rys = G5 “Haf(ahj T s L

With this in m1nd, several possibilities are
analyzed as follows.

Case A. The following conditions are satisfied:
(Dm=1; (2) A =0; (3) v =1; and (4) there is
a linear functional relationship between W and S.
The conditions (1) through (3) yield

%= F(V,W) = cl[V-W) . (4-55)
and the condition (4) requires that
W=L(S) =a+bs§. (4-56)

According to Eq. 4-54 and taking the partial derivative
of Eq. 4-56 with respect to S5, it follows that

R
ws

= 3W/3S = b. Furthermore, since DFw = 3F/3W = - 1
and DFV = 3F/3V = cy it follows that va = DFW/DFV
= -1, from which

R = va Rws =-1b=-b. (4-57)

Substituting Eq. 4-57 into Eqs. 4-33 through 4-35 gives

1 -b
= 1% and © =

il 4-58
Y (4-58)

p = cl{1+b).

Thus, with the values of 1, 9, and @ as given

by Eq. 4-58, Eq. 4-36 becomes a differential equation
with constant coefficients, namely,

di

(4-59)
dt

e, (1+b) [q, - 115 (bQ+a)] -
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Solution to Eq. 4-59 pertaining to two particular cases
was obtained by Yevjevich [1959]; (a) when bQ + q,

= 0, the solution is given by Eq. 4-8 in which ¢
should be replaced by c1(l+b) of Eq. 4-59; and (b)

= constant # 0 the solution is given

when bQ + 9, ? 3
c = c1(1+b) and g ™ i:g(bq +qr).

by Eq. 4-10, where

Case B. Let the conditions of Case A hold, ex-
cept for the condition (4). It is readily seen that
when W and S are arbitrary functions of the water
table elevation, h, the Rws is a function of h, re-

gardless of the fact that a,
F(V,W), namely

is expressed by a very
simple function

_ 3W/3h
" 35 /dh

= Rws(h) é (4-60)

WS
Thus, ¢, ¢ and © are all functions of h, that is

W =1y(h); ¢ =4(h), and © = 8(h)

When these values are substituted into Eq. 4-36

dq

at = -0 [q, + oMQ - v(h)a_ ]  (4-61)

is obtained.

Q and .

variables, q  and h, both functions of time. Hence,
in order to gbta1n a solution to the above equation,
it will be necessary to couple Eq. 4-17 and Eq. 4-61.
Thus, a solution to a system of two differential
equations is required, namely:

This is, even under the assumption that
are known, a differential equation with two

d
DU oma, ¢ 6(h) Q- W(W) al,  (4-62a)

dt

[
S la, - Q]

which, of course, can be converted into a single
second-order differential equation of h.

(4-62b)

From the theory of differential equations, it is
known that only a relatively small number of differen-
tial equations with nonconstant coefficients can be
solved analytically, i.e., solutions are obtainable
only for the equations satisfying fairly rigid require-
ments concerning the functional relationships contained
in the differential equation. In addition, the des-
cription of Q and q, must be carried out piecewise.
This creates further ‘difficulties in obtaining an
analytic solution. For that reason it is proposed that
the solution to the set of Eq. 4-62 be found by a
numerical method which will be examined in detail later.

Case C. This pertains to the most generalized
approach to solving Eq. 4-36. As demonstrated in Case
B, a relaxation of the condition (4) of Case A intro-
duced some difficulties which could not be overcome
when attempting to obtain an analytical solution.
can be expected that the further relaxation of the
conditions stated in Case A will create additional dif-
ficulties. This is illustrated by a simple example.

To that end, relax the condition (3), say that v # 1,
while retaining the conditions (1) and (2). Then

It

q, = F(V,W) = ¢ (v-0)" (4-63)



from which it immediately follows that

N oF _
DFV{V,H] and — = DF"{V,?).

W (4-64)

3F
av
Since V = V[y, H(t), h(t)], it follows that in

Eq. 4-36 the term D., = D_.[H(t), h], which
system of three di ffb¥entih] equations

dqu
G -Cla,+W-vql,

(4-65a)
dh 1
and
dv
il TR (4-65¢)

which can be solved numerically.
4-5 Numerical Integration of the Storage Equation

The hydraulic conditions resulting in the simpli-
fied flow equations, such as those given by Eq. 4-59
for Case A and Eq. 4-62 for Case B, are infrequently
found in the field. Furthermore, hydrologic data are
almost exclusively discrete time series. Finally, as
already demonstrated, it is necessary to simulate the
system states, S and V, in such a manner that will
in turn facilitate simulation of the flow components,
qS(t) and q (t). This is a compelling reason to
dévise a numefical approach cavable of handling a
relatively wide range of sitaations that may be
encountered.

To that end, the set of differential equations

4-65 is rewritten in the finite difference form, for
At = 1, as
u u
9. *4q R ™
t t-1 t -1
St - 5t~1 = 5 - 3 i (4-66a)
u u T T
q q q q
t t-1 1 t-1, 3
Vt - Vt-l = 3 5 {4-66Db)
and
u u
u u qt qt-l Qt * Qt-l
% - Y. > 2 " 2
T T
G * 9%
-1-'—*—-2——-; (4-66¢)

where Eq. 4-16 was incorporated into Eq. 4-66a, and
where the correspondence of the symbols in Eq. 4-66 to
those previously defined is obvious. Replacing

B = Q * Q_y)/2 ap = (4 *+ 4, ;)/2 and

q: = (q: + q:_lJ/Z, Eq. 4-66, after rearrangement,
becomes
T o
St = st-l + 9% - qt i (4-67a)

leads to a
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‘less to say, increases the computational burden.

% * Ve E * ;f (4-67b)
and
":"}“"i"g'%q:-l - ﬁ’at
% T+_BEJ/_2 "’E (4-67c)

It is, however, customary to take time units of a
length over which the flow components can be considered

unchanged. Thus, the values q:, qi and Qt can be
replaced by q:, qi and Qt. In this case Eq. 4-67c

will be slightly modified. With these modifications,
the working set of equations is

st = st_1 + qf: o Qt g (4-68a)
u T
Vt = vt-l ~q, *q, (4-68b)
and
u 1 u <] 8 T
L " T %1 " Teo % ' TooMe- (4-68c)

Thus, a system of nonlinear differential equations
was converted into a system of nonlinear algebraic
equations which are more convenient to work with. It
is to be solved for all t = 1.2,...,Nt, where solu-

tion is always based on the knowledge of the system at
time t -1, ¥t = 1,2,...,Nt. Consequently, the

system can be solved when the three initial con-
ditions, 50, V0 and qg, are known.

Two points should be. emphasized. (1) The value
of Qt consists of several flow components (Eq. 4-18).

Under modified conditions, some of these components may
be dependent on the system states, St and Vt' It

.appears that the evaporation, qe(t), has the most sig-

nificant dependency on St' Inaccuracy resulting from

the lumped Qt can, of course, be reduced by splitting

it into components. This, however, would introduce
additional equations into the system 4-68, which, need-
(2)
The flow components comprising Q. and qf are always
assumed known, they are either obgarved or generated.
Hence, if a simulation of the modified system is de-
sgredpaccsrding to_(1), some assumptions concerning

Qs qgs Qy and Qs as explained in Section 3-2,

have to be made.

The above system of equations can be solved by
utilizing various computing techniques. The remaining
part of this section is devoted to this aspect of the
problem. Nevertheless, it is impossible to prescribe
a method for each particular case that can be found in
the field, since these particular conditions determine
preferability of one technique over another. It
should be reiterated that, in general, 8, & and V¥
are functions of the volumes, V_ and W_ = W(St).
Thus, Eq. 4-68c can be written "as t



Qg = TOV,W) qp_; - ACV,M) Q, * T(V,W)q ,

(4-69)
1 5 .

where T(+) = 1T+8 A(+) = T+ 5 $ = I'(-)o¢, and

N(-) = ;¥ = [(-)8y. With this in mind, two

possibilities are outlined.

(a) When the time intervals are short enough so
that the following holds (see Fig. 3-3).

V, + V W +NW
R (i S ) WG W
e %o r( o Z ) g
V, + V W+ W
Y o Sl T T W
e W "‘( i ) .
and
s % ri(Vt + Vt~1 Nt + wt»l
t-1" "t-1 2 3 2 .

This is a relatively simple computational problem
consisting of the following steps.

(1) For the known Vt-l and st-l’ find
wt-lcst-I) and evaluate the functions
(), A(*), and 0().

(2) With q:_l, Qt and qz and the evaluated
functions of (1), compute q:.

(3) Use the values of qi. qz and Qt in Egs.
4-68a and 4-68b to find St and V_,
respectively. t

(4) Repeat steps (1) through (3) for every
tim 1,250, N0

t
(b) When the above conditions are not satisfied,

it will be more difficult to obtain the solution be-
cause some iteration procedure is needed (see Fig.

3-4). Computation can be described by several steps
as follows:
(1) Assume the values of V: and S:, and find N:.
(2) With the assumed values of V: and w:, compute
. (V: Vg Y %y
2 $ 2 ’
" Ve % Yoy ": * ¥
2 2 2 i
and
a
i ¥e * Yo AW
2 ! 2 :
(3) Compute q: according to Eq. 4-68c.
(4) Insert q: into Eqs. 4-68a and 4-68b to find
c c
Vt and St'
(5) Repeat steps (1) to (4) until VE 2 V: and
s as? (each time redefine % = g° and
i E t t
Vt - Vt].
(6) Repeat steps (1) through (5) for every
tom 102 N

e
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Evidently, an initial guess will have to be made
for every t = 1’2""’Nt' However, it does not appear

to be a problem in practical computation. That is, the
initial guesses of Ul and Wt are obtained by the

steps (1) through (3) of possibility (a).

The symbols V:, w:

assumed values and Vi, W

and S: stand for the
: and Si stand for the
computed values uf the volumes V_, W and S_, re-

s y L, t
spectively.

If a simple mathematical relation between the two
subsystems such as that given in the Case A of the
preceding section holds, and when finite difference
equations are used instead of differential equations,
some computational simplifications can be achieved.
Under these conditions the parameters given by Eq. 4-58
are constants, namely

&

Y = T%EF 0 =2, and 0= c (1+b) ,
which, when inserted into Eq. 4-68c, give
1 1
=== 4-70
% % 148 Tec, (1°D) (2-70)
_ e . cl(l+b} B -clb i
%2 " 150 Tvc (I+0) (1+B) ~ Toc (1%) °
and
.8 i cltl*b) i cl .
o3 " Teg ¥ % Tee,(19B) © T+b © Tre (ID) © (4-72)

Since b and cl

dys Oy and a; are also constants.
-

are constants, it implies that
Thus, Eq. 4-68c

can be written as

u u o
A = 3 3 -2 Q +o;q,.,

which is the autoregressive-moving average (ARMA)
model. It is very appealing, for it describes the ex-
change flow, Ay » at time t, ds a linear function of

(4-73)

the same flow at the preceding time t - 1, the lumped
surface flow components of Eq. 4-18, that is,

_ b e E._.i¢_ d _ P
Q =% * R * 9~ % "% "%

and the recharge, qi. Furthermore, since o, s and

1

a., are constants, thus giving the exchange flow in-

3
dependent of the volumes V and W, the former does
have to be simulated. Hence, the equation 4-68b may
be dropped out of computation so that only two equa-
tions must be solved simultaneously for every time in-
terval, In order to be able to solve the equations at
time t = 1, one must know the intial conditions, qo.

The above discussion demonstrates two points.
First, it shows what conditions are implied by assuming
the ARMA model for the exchange flow between two re-
servoirs with significantly varied contents. Second,
the ARMA model can be used when there are no data to
identify the physical components, such as W and V,
and the exchange flow, qu, as described in Section
4-4, Eq. 4-38.



Chapter V
MATHEMATICAL MODEL FOR RECHARGE

5-1 Introductory Remarks

Recharge to an underground aquifer is a complex
hydrologic process. It depends on a large number of
atmospheric factors and on the properties of thedrain-
age basin. These usually vary in both time and space.
Classical hydrologic literature [Mainzer, 1942;
Linsley et al., 1958; Chow, 1964] describes the in-
filtration as a decreasing function of time measured

from the moment when precipitation starts. A fre-
quently used expression is
-kt
Arp = pe * (g = apcde s (5-1)
where qrp = the infiltration capacity, Qo * the

maximum infiltration capacity, s ™ the infiltration

rate approached asymptotically by the infiltration ca-

pacity, q__, as the soil becomes saturated, and k =
constant river basin characteristic. Clearly, the
infiltration capacity, , equals the maximum in-

Grp

filtration rate, 4., at time t = 0. The above expres

sion is based on the assumption that the supply rate,
p, is greater than or equal to the infiltration capa-
city (p ;=quJ. In that case the actual infiltration,

Qpr equals the infiltration capacity qrp' If this is

not the case, namely when the supply rate, p, is
smaller than the infiltration rate, qrp, then Q= P-

From examples given in the cited references it

can be seen that the infiltration rate capacity, qrp,
On the

other hand, a study of reservoir design and operation
involving optimization can at best be based on daily
observations. More frequently, the data are discre-
tized over much longer time intervals. The following
consideration assumes a day as the basic time unit.
The rainfall events are assumed uniform over the
selected time unit.

rapidly approaches the constant value Q.-

The conditions which determine the recharge,
usually found in areas of karstified limestone, can be
regarded as distinct from those prevailing in the more
frequent river basins. Several factors affecting re-
charge to karstic aquifers are important [Le Grand,
1973] such as: (a) water movement occurs through
privileged routes such as fissures, cracks, faults, and
even large underground river channels; (b) vegetative
cover is poor or nonexistant; and (c) geomorphologi-
cal features allow for accumulation of large quantities
of water over small areas, from which concentrated
recharge of high intensity takes place.

All these factors, combined with the inevitable
river basin heterogeneity and often the underground
communication between adjacent catchments, make the
physical recharge models speculative, if not unrealis-
tic. The application of a simpler mathematical model
for the description of the recharge to a karst aquifer
is unavoidable. This approach seems particularly
appealing when the recharge model was used in a pro-
cess seeking optimal use of a surface reservoir
physically connected to a natural underground storage.
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The modelling of recharge to karst aquifers is,
as is karst hydrology itself, a relatively recent deve-
lopment. Artificial recharge to a karst aquifer was
described by Green [1967], while natural recharge to
several small drainage basins in the United States was
analyzed by Knisel [1972], with the recharge model
based on daily precipitation given by

ab
5 s
el

R = (5-2)

a

where R = the fraction of the daily precipitation, p,
which infiltrates, and a and b are constant charac-
teristic parameters of the drainage basin. Two impor-
tant conclusions can be drawn from the Knisel study:
(1) description of karst hydrologic systems by linear
models is a satisfactory approximation, and (2) when
the recharge given by Eq. 5-2 is used in simulation of
springflows a better fit to the observed data is ob-
tained than when the precipitation events are used for
the same purpose. In addition, it is readily seen from
Eq. 5-2 that the recharge model is an appropriate non-
linear transformation of the daily rainfall.

Based on the above conclusions, an attempt is made
herein to develop a mathematical model for recharge to
karst aquifers from the data collected under the
natural hydrologic conditions. By relaxing the assump-
tion implied by Eq. 5-2 and by utilizing a model which
is able to relate the recharge to both the daily pre-
cipitation and conditions in the river basin created
by preceding hydrologic events, high quality simula-
tion models were expected.

5-2 Model Formulation
It was demonstrated in Chapter IV (Eq. 4-40) that,

under natural hydrologic conditions, the continuity
equation of an underground subsystem can be written as

as_(t)
dt

= -la,(®) - q(®)] , (5-3)

where Su(t) and

qr(t] are defined as the underground exchange flow

is given by Eq. 4-39, and quEt}

and the recharge to the underground subsystem,
respectively (see Eq. 3-6).

When the hydrologic system is assumed linear, then

dq (t
W - _clq, (1) - q. ()] 5-4)
t
is obtained according to Eq. 4-5 for n = 1, The vari-

ables of Eq. 5-4 are continuous time functions. Since
the observations of the hydrologic time series are
almost always given as discrete values over specified
time intervals, and since treatment of the discretized
data usually gives satisfactory results, Eq. 5-4 is
rewritten in a finite difference form for two consecu-
tive time points as



u u

9 = %1 u r
= ~clg, = q,) - (5-5)
The notation was changed slightly to reflect the use

of discrete observations. The correspondence to con-
tinuous variable notation is evident. Depending on
what form of the right-hand side of Eq. 5-5 is used,
two slightly different cases are presented:

Case 1
u u
w_u _ |%T%ha
B Qe === %] » (5-6)
which, after a re-arrangement, gives
u
q, =2 -¢ u 75 -
L ol SRS ol (513
Case 2
u T
Qg - ;= -<(ay - ap) , (5-8)
from which it follows that
c
u 1 u
T e Sy Ty (5-9)

Regardless of the expression used, it is readily
seen that Eqs. 5-7 and 5-9 are mathematical formula-
tions of the familiar autoregressive-moving average
linear model of size (1,1). Detailed treatment of this
type of model is described by Jenkins and Watts [1968],
and by Box and Jenkins [1972], from which the abbre-
viated notation, ARMA (1,1), was adopted.

be

expressed in terms of a linear combination of some
functions of daily precipitation, fj[p), the form of

which is elaborated upon in the subsequent text.
Namely, let

Let the recharge, qi. of Eqs. 5-7 and 5-9

r
q. = B, * Blfltp} B sty B Bmfm(pj ., (5-10)

with ﬂo' Bl""‘sn being constant parameters, re-

ferred to in the further text as the vector B. Since
the recharge is a function of the daily rainfall at
time t and is also affected by the conditions in the
drainage basin created by the precipitation of the
several days preceding the day t, the linearcombina-
tion on the right-hand side of Eq. 5-10 should reflect
these facts. The vector B of Eq. 5-10 cannot be
identified directly. However, the identification can
be done in an indirect manner as follows.

Inserting the right-hand side of Eq. 5-10 into
Eqs. 5-7 and 5-9 yields

Qe = 0o * ddp.y * 4,51 (0) + v 8 F (), (5-11)

where the coefficients ¢°. ¢1....,¢m+1 for Case 1 are
given by
2¢ 2 -~-c 2c
*o = Bo T+ec 1 " Ty c - Lo B1 2y gt
Y (5-12)
mel  m 2 + .
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The vector ¢ for Case 2 is described by

[ I e = Il e = [

=N TR P N=Tee i " &y g
[+ -
¢m*l & Bm 1 +¢c" (5-13)

Equation 5-11 has retained the basic characteristics of
Eqs. 5-7 and 5-9, i.e., it is still a mathematical for-
mulation of the ARMA linear system. However, the order
of the model is changed. Instead of only one term of
the moving average part of Eqs. 5-7 and 5-9, Eq. 5-11
has m terms, thus it is defined as an ARMA (1,m)
model.

Application of this type of linear model to
hydrologic processes was described by Yevjevich [1972c]
The model is usually convenient from the computational
point of view because the order of the MA part, m, is
usually a small number; it is very seldom greater than
three. In many instances, m = 1 appears to be a
sufficiently accurate approximation of the system.
This can be explained by the fact that the information
contained in the terms j = 2, j = 3, ... is already in
the autoregressive (AR) part of the !1:oclel1:l In the
present model, the AR part consists of 9.1 These

properties of the model make it attractive for use
under the conditions that the system response depends
on the previously realized events, as is the case with
infiltration.

From Eq. 5-11 the system can be identified. First,
the vector ¢ 1is estimated. From that, the vector §
is found for either Case 1 or Case 2. The vectors B
of the two cases given by Eqs, 5-7 and 5-9 are not
significantly different from each other. Nevertheless,
the form given by Eq. 5-7 seems more appealing and’ is
recommended for use. However, both cases should be
investigated and the one which gives a better approx-
imation to the observed set of data should be selected
The measure of goodness of fit is discussed in the
next section.

5-3 Calibration of the ARMA (1,m) Model

It is evident that the vector ¢ can be estimated
from Eq. 5-11 when a sequence of observations of the
exchange flow, qf, and of precipitation, Py» are
available. The estimation can be done by the least

squares estimation method. It should be noticed that
the coefficient ¢ of Eq. 5-11 can easily be forced

to zero by the computational algorithm, which results
in &u = 0 in Egs. 5-10, 5-12, and 5-13.

In the course of the model calibration, several
aspects are of interest: observation of a sequence of
the underground outflow, q:, the form of the func-
fj{p), of the

moving average part, m. There are no precise answers
to the last two questions. However, some generally
accepted rules in approaching the problem do exist.
They are outlined below.

tions of precipitation, and the size

A set of data for the recharge model comnsists of
daily observations of precipitation events at least
one rainfall gauging station and of daily observations
of the underground exchange flow into a reach of the
streamflow channel, q%, both collected while the

system is under natural conditions. If there are more



than one observation station, a weighted average
according to the area covered by each station is recom-
mended. The exchange flow series can be estimated from
the observations of input and output series of the sur-
face subsystem from Eqs. 3-5 and 3-7. When these equa-
tions are combined, they give the discretized form of
the continuity equation of the system as

O S ) e g c d

G =9 "9 "9 - 9% "~ 9% - % (8 -

with all the variables as defined in Chapter III.

5,1 (5-14)

Selection of the form of the functioms fj(p),
This aspect of the system identification is probably
the most important. Yet, there is no method for se-
lecting the form of the fj(p}. Several alternatives

must be considered and the one which appears to be most
suitable is chosen. Nevertheless, there is no guarantee
that some other form of the fj(p} would not give a

better fit. The following is only a guideline in se-
lecting the form of the fj(p) functions.

[t seems justified to attempt selection of the
function fj(p} which is able to reflect the existing

conditions affecting recharge. For that reason, some
polynomial transformation involving precipitation at
times t, t - 1, t - 2,..., seems suitable. Let the
generalized expression of the fj(p} be of the form

Z Z

£ = () | () (5-15)

where Py and pt-j+k are observations of daily rain-
fall on days t and t-j+k, respectively, and 2z, and
z, are constants. From this, several particular

choices can be derived.

(1) Let z = 0, 2, = 1, and k = 1, then
fj{P) = Pt_j‘,l: (5'16)
s0 that the recharge can be written as
qi = BgPy * BoPely * oo BuPrinel” (5=17)
This is the simplest form, where fj[p} = pt-j+l is

precipitation of j - 1 days prior to the time t.

The form of the MA model of Eq. 5-17 is frequently used
in hydrologic modelling and is considered to be a suf-
ficently good approximation of the processes involved.

(2) Let z, = i, 2y = 1, k=1, then
fj(P} = ptpt_j¢la [5“18)
from which it follows that
2
q: = slpt i sztpt-l ¥ s ﬁmptpt—ml' (5-13)

In a similar manner some other forms can be derived and
investigated. It should be noticed that Egqs. 5-17 and
5-19 represent the response function known as the linear
unit hydrograph and the non-linear unit hydrograph,
respectively.

Selection of the size of the MA part, m, can be
performed by using the method outlined by Jenkins and
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Watts [1968]. To that end, let i: represent  the

estimated value of the underground exchange flow, q“.
Thus, .

Qg = 0,95 *+ 0,6, (0) + ... #
From this, the vector ¢ 1is estimated by solving a
set of m + 1 linear equations which minimize the
sum of the squares of the differences between the ob-
served and the estimated values of the underground
exchange flow. The sum of the squares, e, is givenby

bperfa® -+ (5-20)

N
z = I [qt “ ﬁ: .
= ;t 0 B () menem b (]
" e (qp = #9191 = 0F () =oom Oty {5_21)
with N, = the total number of observed data points.

Evidently, the minimized value of ¢ depends on the
number of terms included in the MA part of the model
of Eq. 5-20. Let ui = e/Nt, where m denotes the

size of the MA part of the model. When the values of
g5 are computed and plotted against m, for m= 1,

2,..., an empirical function is obtained. This func-
tion can take one of the following two shapes: either
it reaches the minimum for a certain value of m after
which it increases with inclusion of more terms, or it
is a nonincreasing function of m. In the former case,
the size of the MA Bart is that m which gives the
minimum value of When the latter shape is found,

the size
ci is accomplished should be selected.

m after which no significant reducticn in
This makes the
decision concerning m somewhat arbitrary,

fj (p),

m, are chosen, the estimated vector, ¢, must be con-
verted into the desired recharge model vector, §.
When the form of the model is that of Case 1 {Eq 5-7),
the parameters 8 o’ 81, i Bm are given as follows:

After the function, and the model size,

2 +c . .- i L 2*c
Ba > R B1 s ek YLD Bm 7c %mel ?
(5-22)
where in Eq. 5-22
- 20 -4 (5-23)
1+ ¢1
When the Case 2 is chosen, the vector g is
1% ¢ . 1 +.c o e
Bo c Rgiansd 8 TENe ¢m+1,
(5-24)
where in Eq. 5-24
1 - ¢1
c = (5-25)
*)

5-4 Model Application

In order to demonstrate the validity of the re-
charge model developed above, the computational results
of a case study are presented herein. The model was
applied to the simulation of the flow at the large
karst spring at the source of the Trebignjica River
in Yugoslavia. The drainage area was determined to be



926 kmz. The estimated statistical parameters of the
springflow, assuming that the series is stationary,
have been determined by Graupe et al., [1975] as: the
mean daily discharge Eﬁ = 45,36 m”/s., the variance

of the daily flow ¢ = 2270.8 resulting in the stan-
dard deviation ¢ = 47.65, the first serial correlation
coefficient r, = 0.937.

Data availability. In addition to daily observa-
tions of the springflow from January 1, 1954 until
Octohpr 31, 1967 (on which date filling of the
Grancarevo Reservoir began, resulting in maximum water
depth at the Spring of about 70 meters), the amount of
daily precipitation was observed and recorded at 21
rainfall gauging stations unevenly distributed over the
drainage basin. The rainfall observations are avail-
able from January 1, 1954 until December 31, 1967. How-
ever, almost every station had some discontinuities in
observations.

Other data important in recharge modelling such as
evaporation (or effective precipitation), snow pack and
snow melt, and the area over which the observed preci-
pitation record is representative were not available.
For that reason no attempt has been made to incorporate
these factors into the present study despite the fact
that they may have an impact on the results.

Data preparation. For the reasons explained above,
the precipitation data used in this study were prepared
as follows:

1 21
P, = Pe g It 40 s
t npt jui i e (5-26)
where npt is number of observation stations at which
the records exist for the day t, namely
21
B jgl L (5-27)

with p, = the arithmetic average of precipitation es-

timated from the available observations over the drain-
age basin during the day t, Py " the rainfall ob-
on day t, and ‘I

tlj
=1 if observation

servation at station j is the

indicator function defined as Ié j

of Pe. 5 exists, and 1 = 0 otherwise.

t.j
The observed precipitation records were given in
millimeters per day. These were converted to the units
commensurable with the observed discharge (m3/sec). The
trans formation factor for the given drainage area is:
1 mm/day = 0.001 926 10% (1/86,400) = 10.72 m3/sec, It
was found that the average rainfall is p = 53.73 m/sec,
50 that the runoff coefficient is C_ = qu/§'= 45.36/

53.73 = 0.894.

Based on the data described above, computations
were performed for two distinct conditions of the
drainage basin as follows:

A. System identification over dry periods. The
definition of the dry period is somewhat arbitrary, but
rather strict conditions have been imposed. For the
purposes of this analysis, an event observed on day t
was regarded as suitable_for computation if no precipi-
tation greater than 10m™/sec (approximately 1 mm/day)
occurred during that day and the two days preceding the
day t. In other words, it was assumed that, when the
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above conditions were satisfied, there was no recharge
to the underground aquifer. With q.(t) = 0, Eq. 5-4,

when transformed into discrete form and for a time

unit At = 1, has a solution

u u =-C

Qe * 9. 1 © (5-28)
where the symbols are as defined previously. The pur-

pose of the identification was to estimate parameter c.
This was evaluated by several approaches.

The first approach was based on the average value
of the coefficient €y ln(q%_lfqg) evaluated for

all values of ¢
were satisfied.

for which the required conditions
It was found that ¢ = 0.065129, from

which, for Case 1 of Section 5-2, the parameter ¢l
given by Eq. 5-12 is
2 - 0.065129
% = 7T 5065129 ° 0.9368 . (5-29)

For Case 2, the parameter ? is given by Eq. 5-13 as

= T omossTI - 0-9588.

However, when the parameter y
Eq. 5-28,

4 (5-30)

is evaluated by

-¢ _ ,-0.065129

4 = e = 0.9369 (5-31)

is obtained.

The second approach is based on the least squares
estimate of the first serial correlation coefficient
of the observations satisfying the required conditions
(not the first correlation coefficient for the total
springflow record). For the estimated values of r,,
following the reverse procedure of that given by
Eqs. 5-29 through 5-31, the coefficient c is estimated
as follows:

For Case 1,
2(1 - ri)

1+ rl

Eq. 5-23 gives

_2(1 - 0.985)
1+ 0,985

co= = 0.042901 .

(5-32)

For Case 2,
1 - T

Eq. 5-25 gives

.1 -0.985

5988 - 0.043841 .

c =

% (5-33)

From Eq. 5-31 it follows that

¢ = In(1/7;) = 1n(1/0.958) = 0.042907. (5-34)

These results point to the fact that the estimated
model parameters, ¢1 and c¢, are essentially the

same for the two cases. However, the method of estima-
tion affects the magnitude of the parameter c¢ signi-
ficantly, even though the parameter " remains
almost unchanged.

B. Identification of the system under general
eonditions. It is inconvenient and mathematically in-
correct to treat the system piecewise according to the
hydrologic conditions prevailing at different time
periods. Hence, estimation of the parameters to be
used in the simulation of the system under rather
general conditions is required. Thus, a complete set
of the available observations should be used to
estimate the parameter vector b.



The model parameter vector ¢ is evaluated for
the precipitation functions given by Egq. 5-17. From
the vector ¢, the vector B is evaluated for Case 1
and Case 2. Aspects of the size of the model, m, are
treated by simply evaluating the model parameters and
the goodness of fit for various values of its size.
The parameter vector ¢ is estimated by the least
squares method, whereas the goodness of fit is measured
by the ratio of the mean square error and the esti-

mated variance of the process being fitted. In the
case of the springflow record,
2
“em
2 (5-35)
q
where uim is the mean square error (MSE) estimated by
N
Panl, § 2
»
em Nt-l oy, W
(5-36)
5
and a; is the estimate of the variance of the ex-
change flow N
2 1 u =2
9% =N -1 E (qt =gy
T Nt e
- (5-37)
with q in Eq. 5-37 estimated by
N
- t
i tzl %
t (5-38)

In Eqs. 5-35 and 5-36, m denotes the size of the
moving average model of Eq. 5-21.

Figure 5-1 gives the MSE, 02 for the precipi-

em’
tation function given by Eq. 5-17 when the model is
regarded as stationary for m =1, 3, 5. From this
graph, it can be seen that the simulation does not
improve significantly as m increases from m = 1 to
m=3and m=5. More importantly, this graph shows
that the variation of the daily springflow that cannot
be explained by the ARMA(1,1) is only less than 8.0
percent of the total variation of the daily springflow,
which is estimated to be 2270. In addition, Fig. 5-1
shows the MSE, evaluated in an indirect manner, for

the ARMA(1,0). The ARMA(1,0) is, in effect, the first
order autoregressive model. Thus, from the estimated
first serial correlation coefficient, T = 0.937, and
from the expression 52 = (1 - ri)ai, &2 =277; o
slightly over 12 percent. This result is plotted for
m= 0.

Table 5-1 shows the parameters

where m = 1, 3, and 5. For each model size, m, the
parameters are evaluated for Case 1 according to Eq.
5-22 (upper line) and for Case 2 according to Eq. 5-24
(lower line). Figure 5-2 depicts graphically the pama-
meters of Case 1. Notice that the sum of the para-
meters, )8, for each particular model size is very
close to the runoff coefficient, C_ = 0.894, as it

P
should be.
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Fig. 5-1. Mean Square Error of the Runoff Prediction

at the Trebi¥njica River Spring (1954-1967)
versus the Model Size.

Table 5-1. Parameters of the Stationary Recharge Model for Linear Precipitation Functions.
g;;el
i 1 2 3 4 5 LB Parameter
size
m Case Parameter vector E_ ¢
1 0.8859 0.8859 0.1211
1
2 0.8859 0.8859 0.1289
1 0.7906 0.1269 -0.0310 0.8865 0.1300
3
2 0.7906 0.1269 -0.0310 0.8865 0.1390
1 0.7956 0.1298 -0.0398 0.0314 -0.1318 0,8852 0.1288
5
2 0.7956 0.1298 -0.0398 0.0314 -0.0318 0.8852 0.1376
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Fig. 5-2. Estimated Parameters, E. of the MA Model for Recharge for
Model Size m=1, m= 3, and m = 5.

acceptance of its part, i.e., the MAmodel for recharge,

i is justified. Using the parameters of this MA model
able good prediction of the springflow based onprecip- ° justified
itation, only a few paranetess og the ARMA modeplr mspt and precipitation, the recharge, qr(t], of Eq. 4-36
be estimated. Furthermore, since the springflow simu-  can be estimated for either the natural or modified
lation by the ARMA model is satisfactorily good, conditions of the hydrologic system.

The preceding results confirm that, for a reason-

21



Chapter VI
IDENTIFICATION OF THE SYSTEM

In attempting to identify the parameters of the
hydrologic system described in previous chapters, the
existance of two conditions must be kept in mind. Those
conditions were defined as natural and modified condi-
tions corresponding to the planning and operation
stages of the storage, respectively.

Depending on the objective of the system identifi-
cation, the system conditions, and a number of factors
characterizing the drainage basin under consideration,
various procedures of system identification can be
applied. A precise outline of the procedure to beused
in each particular case seems not feasible, Instead,
the method of identification is chosen according to the
field conditions.

The identification of the surface flow components
is of no concern in this study. The following is a
brief discussion of those system components which are

used in the optimization scheme and an outline of the
methods for the underground storage  subsystem
identification.

As already outlined, performance of the underground
storage subsystem is usually affected by the system
modification. However, it is assumed that the outside
component entering the subsystem, namely the recharge
qut), remains independent of the modification intro-
duced. As a result of this assumption, the parameters
vf the recharge model identified under natural condi-
tions are regarded valid after the reservoir has been
constructed. A method to determine the parameters of
the recharge model was described in Chapter V. Thus,
the recharge qr(t}, along with the surface flow com-

ponents is assumed to be known.

6-1 Surface Reservoir Geometry

In order to carry out the proposed optimization,
the surface reservoir geometry must be identified. Two
components are of interest: (1) water content, S(h);
and (2) surface area, Ar[h]. According to the assump-

tions made in Chapter IV, these two geometric compments
arc easily defined from topographic maps and surveying
data gathered prior to the system modification. The
surface reservoir content, S(h), is then described as
a function of the water table elevation measured either
from sea level or from an arbitrary reference point
[Yevjevich, 1959]. Some form of polynomial may beused
to best fit the volume to level relationship. Likewise,
the reservoir area, A_(h), may be described by a
polynomial fit. 2

In addition to S(h) and Ar(hJ, under some
conditions, a functional relation, Ar[S(t)], may be

desired to help avoid lengthy computation of h from
the known values of S(h). This relationship does not
appear to be difficult to establish.

6-2 Underground Subsystem Geometry

In Chapter IV, magnitudes of W and V were
assumed to be known. They were defined as underground
witer content up to the horizontal water level of the
surface  subsystem and the groundwater table,
respectively, as shown in Fig. 4-1.
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According to the assumption of the existance of an
impermeable barrier that encompasses the underground
subsystem, the magnitude of W can be defined as a

function of the same elevation, h, that is used for
identification of S(h). Additional requirements are
that the impermeable barrier and the effective rock

porosity, v, be defined. While the former is beyond
the scope of this study, some remarks concerning the
latter are given below.

The volume V 1is not defined by purely geometric
components of the system. It can also be regarded as
a hydraulic characteristic of the underground storage
subsystem for the following reasons. First, besides
being dependent on the effective porosity, vy, and the
surface subsystem elevation, h, the value V also de-
pends on the shape of the groundwater table and the
complex porosity structure. For that reason, system
identification may require a large amount of data to
cover a wide range of conditions that may exist. Seocmd,
as pointed out, the hydraulic conditions of the under-
ground subsystem after construction of the surface re-
servoir may be distinctly different from the ones that
exist under natural conditions. Thus, the system
identification under the latter conditions may not hold
under the former. From this it can be concluded that
the process of identifying the V(y,H,h) relationship
may be expensive and somewhat time consuming.

For identification of V, it is assumed that
prior to the reservoir construction, a number, say m,
boreholes were drilled into the underground subsystem
and that observations of groundwater levels were re-
corded. Let the observations be given in the form of
vectors H(t), t = 1,2,...,N, where

H(t) = [Hy(6),....H (1], (6-1)
With available observations of the boundary conditions,
i.e., the water table elevation h(t), t = 1,2,...,N,
at the contact of the surface and underground sub-
systems, the vector of the level difference can be
established as

D(E) = [6,(8),...,6 (017 = H(t)-h(e)

= [H, (t)-h(t),... ()T

[ (0-h(),. i @Rl

With the knowledge of H(t) and h(t) the hyper-

surface of the groundwater table can be approximated.
When the effective porosity, vy, is known, the volumes
can be determined and recorded as a time sequence
V(t), t = 1,2,,..,N. Next, a relationship between
V(t) and D(t) is postulated and its parameters
evaluated.

A possible model is examined by means of an

example. Let the desired relation be assumed as
7=A"D+0D"BD, (6-3)
where { denotes volume estimated by means of the

observed vector D, and A and B are matrices of
constants of sizes m x 1 and m x m, respectively.
It is desired to define A and B so as to minimize

the sum of squares of errors over all t =1,2,..,,N.



The problem is solved by solving a set of equations
representing partial derivatives with respect to the
unknown parameters A and B, namely

{3 ¥ R DR RE D (6-4a)
and
@ T T
Eag“’“& D+D BD}=0. (6-4b)

It can be easily shown that, even with such a
simple relation as that assumed by Eq, 6-3, a large
number of parameters is needed (m + mé). It can also
be shown that the above set of equations involves com-
plete polynomials of order four.

To avoid the drawbacks stemming from a large amount
of computation, a special mathematical technique des-
cribed by Ivakhnenko [1970, 1971] can be used. The
technique is called the Group Method of Data Handling
(GMDH). Its essence is solving a number of small pro-
blems instead of a large one, thus avoiding inversion

of large matrices, For example, if m = g, the size
of the matrix formed by Eq. 6-4 is (m + m™) = 8 +64 =72,
However, computation can be reduced by the GMDH to

solving seven problems with three parameters each. Thus,
instead of inverting a 72 x 72 matrix, seven matrices
of size 3 x 3 are to be processed.

In brief, the GMDH can be described as follows:
Let there be eight variables, say Xpsoes It: 15

postulated that every two variables can be modelled in-
to another variable say, Y19Y9s Y3 and Y4r as

.J(a.

Ty T At T Suafe Ny akyXs
Yy Moy Ry ¥ Apogky V5 XXy
T3 ML Mt e
and
T "M 8% N 8N Y (6-5)
From Eq. 6-5 the parameters ai j» (i=1,...,4;
L]
j=1,...,3) are estimated by solving four sets of

three equations. With the parameters a; j? estimates

of Yi values are obtained, which are then modelled

into =z variables, say by

202 b )Yt a3 Y Y
and

2y BBy ¥yt Dap Ty YR m Vs Yyt (6-6)

Next, parameters b1,1""’b2,3 as well as Z;

and z, are estimated. Finally, zl and 22 are
described by another variable, say V, as

Vo= €12y * €2y * C3ZyZp, (6-7)

which is the desired mathematical description of the
volume of the underground storage.

6-3 Identification of the Exchange Flow Model

Some appealing forms of mathematical relationships
for modeling the exchange flow, qu[t], were outlined
in Section 4-4. Also, special casés were discussed in
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Sections 4-4 and 4-5. Once a form of the model
chosen, it is necessary to find:
model size m of Eq. 4-38, and
model parameters.

is
(a) the satisfactory
(b) to evaluate the

The actual procedure for obtaining the answers to
the above consists of evaluating the parameters of
models of various sizes and comparing the goodness of
fit of each model size. Selection of the proper size,
being a matter of judgement, is somewhat arbitrary.

In addition to the V(t) and W(t) series,
identification of the underground storage subsystem re-
quires that a sequence of observed exchange flow,
qu(t), be available. This is obtained when the value

of dV(t)/dt of Eq. 3-12b is substituted into Eq. 3-12a
from which it follows that

ds(t)
dt

qu[tJ = = qc[tj . qd(t] m qp(tJ + qb(t)

* qp(t) + q (1) , (6-8)

where the symbols are as defined in Chapter III.

If GMDH is used as a procedure to identify the V-
model, then the qu~model can be thought of as an addi-
tional level of computation, where a, is a function

of a transform of V and W v

alone.

instead of variable

6-4 Porosity of the Underground Subsystem

Effective porosity of an aquifer varies greatly
over a drainage area. Usually, an estimate of-the
average effective porosity of the subsystem is suffi-
cient to evaluate the effects of the underground storage
on the surface reservoir. The estimation is deduced
from hydrologic observations taken over representative
time periods characterized by specific hydrologic con-
ditions. A method to determine the effective porosity,
v, over large areas is described by Torbarov [1975].

It is based on the evaluation of the amount of outflow
from an aquifer using the method described in Appendix
A, or a similar procedure. Under the circumstances
that a number of boreholes over the subsurface basin
exist, it is possible to compare the average water
table drawdown with the volume of water outflow from
the subsystem. To that end, let the decrease of volume,
AV, be defined as

-V (6-9)

0 t
where is

V, is the initial aquifer content, and Ve

its content at time t.
drawdown be defined as

Furthermore, let the average

AH = [(Hl'o = Hl,t) e e Hy e '.-Im,t]]/m,(ﬁ-loj
where Hi o 1s piezometric level at borehole 1 at
0 is the observation at time ¢,

time t = 0, and Hi &
4 .
for i = 1,...,m. Then the average effective porosity,

¥, can be computed as

L
A.GH

is the horizontal area of the aquifer.

¥ (6-11)

where A



Chapter VII
OPTIMIZATION AND OPTIMAL DECISION POLICY

7-1 Preliminary Remarks

It appears that the most suitable optimization
method for solving problems associated with reservoir
storage planning and operation is dynamic programming,
for it handles discrete sets of numbers rather than
continuous mathematical functions. This technique has
limitations which are encountered in solving large-
scale multidimensional problems. Nevertheless, under
certain conditions dynamic programming remains the
best method because of an innovation called decompo-
sition. Detailed discussion concerning various aspects
of dynamic programming is beyond the scope of this
study. It can be found in numerous publications.

The two basic classes of dynamic programming
problems are: (1) the resource allocation problem,
and (2) multistage dynamic optimization. The former
class is self-explanatory, while the latter refers to
the selection of an optimal policy in time. The multi-
stage optimization can be carried out either forward
or backward. In this study both classes of optimization
described above are utilized. The multistage dynamic
optimization described above are utilized. The multi-
stage dynamic optimization will be carried out forward.

There are two types of variables associated with
every dynamic programming (DP) problem: state vari-
ables, and decision variables. As applied in this
study to water allocation, the state variables denote
the total amount of water allocated, hence they de-
scribe the state of the system. The decision variables
in this case are the amounts of water given to each
economic activity. These variables transform the state
of the system from one value to another. Constraints
describe the limits imposed on these variables. The
region from which variables can be chosen without
violating the constraints is called the feasible region.

Problems that can be solved using dynamic pro-
gramming must satisfy the following three conditions
(Bellman, 1962]:

(1) The return from different activities can be
measured in common units,

(2) The return from any activity is independent
of the allocation to another activity, and

(3) The total return can be obtained as the sum

of the individual returns.

In the resource allocation probhlem treated in this
study, the above conditions are satisfied. However,
in the multistage dynamic optimization, as indicated
in Section 3-3, there is some doubt that this is true.
lixcept for some marginal consideration [Hall and Dracup,
1970], the dependency of decisions has not been thor-
oughly treated in the literature.

The specific problem that concerns this study is
the optimal policy of water release under the condition
of joint surface-underground storage. The underground
exchange flow is an input to the surface reservoir;
therefore, it is a feedback process and it can be ex-
pected that some iterative procedure will be involved
in finding the optimal policy. To cope with these
difficulties, a multilevel optimization approach is
proposed. The first level is performed by the resource
allocation procedure. It can include .several sublevels
of optimization. The next section is devoted to a de-
tailed discussion of the mathematical methods needed to
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perform one sublevel of optimization. Additional sub-
levels represent a repetition of the techniques des-
cribed. The essence of the procedure in each level is
conditional alloeation. Conditional allocation can be
thought of as a contigency plan; it gives the optimal
allocation for any future decision, whatever the
future decision happens to be.

The second level of optimization is performed by
the multistage dynamic optimization scheme, which is
based on the final results of the first levels used.
This optimization level is outlined in Section 7-3.

7-2 Resource Allocation Problem

Assume that there are n economic activities
competing for a total amount of a resource X. Let
each activity generate the return of gi(x.] monetary
units for allocation of x, units of thé resource.
For computational convenieﬁce, it is assumed that X
is a number belonging to a discrete set [x] =
EPRRRPE. ,t.‘.aﬁ], that is Xe[x]. This assures that

J
the computation is performed only over a set of dis-
crete values. It is also assumed that &z - ﬁ i *
s ] -
constant, ¥ j = 2,...,m.

According to the assumption stated in the Section
7-1, the total return can be expressed as

n
R(xpseeesx ) = izlgi(xi) 3

(7-1a)

subject to the constraints

Xg2 8, (7-1b)

% A% (7-1¢)

Xe [x] s {7-1d)
and

X *eeatxy < X. (7-1e)
Where a, 2 0 is the lower limit of the allocation to
the i-th activity, ¥i = 1,...,n.

The problem of optimization arises from the fact
that there are many ways in which a limited amount of
the resource X can be allocated to the n economic
activities. Yet, only one or a few of them are op-
timal. This problem is easily solved using dynamic
programming. Detailed descriptions of the procedure
involved in obtaining the optimal solution of Eq. 7-la
can be found in most texts on optimization.

A generalized form of the recursive relation
which evolves from the process of maximizing
R[xl,...,xn) is

fi(X) = mix {gi(xi) + fi-l(x - xi}} (7-24)
i
i=1,...;n



X 2a , (7-2b)

X <X, (7-2¢)

Xelx]., (7-2d)
and

X it N € %, (7-2e)

1

in which, when
fl_l(') - fo(')

[
= 1, by definition £, , () =

n -

The meaning of the inequality constraint (IC) of
Eqs. 7-le and 7-2e is that the total amount of the re-
source X need not be allocated. Instead, only that
quantity of the resource which gives the maximum return
is used, while the remaining portion remains unal-
located.

However, in rare practical problems, the situation
requiring equality constraint on the total resource al-
location is encountered. In addition, understanding
the physical meaning, computational procedure, and the
obtained results of an equality constraint allocation
problem (ECAP) is of a general academic interest. It
will also prove very useful in the sections that follow.
For that reason, a brief discussion concerning the ECAP
is presented.

In the ECAP, the constraints of the type 7-le and
7-2e are strict equalities. The total amount of the
resource must be allocated, regardless of the effect on
the return.
capacity is exceeded. The resulting spillover may ad-
versely affect downstream areas. All the other expres-
sions (Eqs. 7-1 and 7-2) associated with the previously
considered inequality constraint allocation problem
(ICAP) are also valid for the ECAP.

Clearly, the optimal policy of the ECAP will be
different from that of the ICAP. In order to find the
difference in computational procedure for solving the
two problems, let the generalized expression of the
allocation problem formulation be rewritten as:

fi(x) = max [gi{xi) + fi-l(x = xi)] ] (7"39')

X,
i
i=l,...,n
X, 2 8y (7-3b)
X < X4 (7-3c)
Xe [x], (7-3d)
and
Xy *oaut X; = X . (7-3e)

It can be seen that there is no difference in computa-
tional procedure between the ECAP and the ICAP for
i=2,...,n since Eq. 7-3a is exactly Eq. 7-2a. How-
ever, the difference exists for i = 1, and this situa-
tion warrants additional comment. Keeping in mind that
when i = 1, the function fi_lt-) = fo(-) 0, the re-

written set of equations of the form 7-3 becomes

For example, this' occurs when the reservoir
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fl(x) = max [gl{xi)] » (7-4a)
*
X 2 a1 : (7-4b)
X <X, (7-4c)
Xe[x]., (7-4d)
and
X, = X . (7-4e)

The constraint 7-4c is redundant to the constraint 7-4e,
hence the former can be dropped out. Furthermore, since

X = X, the right-hand side of Eq. 7-4a becomes
£,00 = nax [g,(x)] = g, (X) , (7-58)
%l
with
x> a (7-5b)
and
Xe [x] . (7-5¢)

Therefore, the computational procedure of the ECAP is
different from that required to solve the ICAP for

i =1 only. Having the best return, f_(X), generated
by allocating the quantity X of the rlsource to n
activities, the optimal policy can be found.

Consider now the optimal return, fn(x), obtained

under the conditions of the ECAP of Eq. 7-3. For
clarity of notation, define fnf.cj} = fn(x = ij for

all j=1,...,m, so that X e [x] = Erl""“nm]' In

this case, the optimal policy of any allocation X =g
can easily be found from the computational algorithm.
Let it be described by a vector of the optimal al-
locations,

i

.

xltzj)
szrj)

lt[fn[x = xj)] = 1‘(21')’ s ¥j=1,...,m,(7-6)

)

where = X (2 + ...+ x;[xj]. The optimal policy

of Eq. 7-6 can be regarded as a conditional allocation,
that is, as the optimal allocation obtained by solving
the ECAP under the condition that there is exactly an

amount of the resource X = 33 to be allocated. When

the problem is solved for all values of j = l,...,m,



the function fn(X) is obtained. Furthermore, for
cvery particular value of X = the optimal policy
is evaluated by the vector 7-6.

Knowing the results of the ECAP, and the corres-

ponding optimal policies of Eq. 7-6, the next level of
4 hierarchical dynamic optimization can be carried out.
llence, one operates with a single return function,
fn[X], instead of n return functions, gl(xl)""’

J:nﬁxn) i

w*
the optimal value, x

The optimization process in this level yields
i for which the optimal al-

location to the individual activities, x (z ), is de-
fined by 7-6.

The preceding discussion has demonstrated the
application of the ECAP in solving multilevel dynamic
programming problems frequently encountered in reser-
voir operation. As already outlined, it is particular-
ly useful for those systems which occasionally can be-
come uncontreollable and the adverse cffects of the
nncontrolled output are known, as in the case of
reservolr spillovers. Actual methods of embedding
the results of the ECAP into a multistage dynamic op-
timization is demonstrated in the next section.

7-3 Multistage Dynamic Optimization

Optimal utilization of water resource from a
reservoir is achieved if the amounts of the resource
used during different time periods of the reservoir
lifetime constitute the optimal policy. It is im-
mediately evident that the optimal policy depends on
muny factors. These factors are classified into three
proups: state variables described by a state vector
ir' decision variables described by a decision vector

b and input variables described by an input vector

L [t should be noticed that, for purposes of this

discussion, the input vector, , consists of variables
which are both positive and ne_ztlve with respect to
the system. It should not be cmnfused with the input
viiriable Qi, defined in Chapter III.

The present section describes a method for obtain-
ing the optimal policy of sequential water releases.
Assume that the system lifetime can be divided into Nt
discrete time units, t = 1,2,...,Nt. There is a
state vector, §t’ associated with every stage t.
which transforms the state

£ =1

'here is a function Tt(')
vector 8§

-1
S, of the stage

of the stage
t.

vector is defined as a set of variables that can be
vontrolled. Then, the state vector transformation can
be described by

into the state vec-

tor Furthermore, the decision

S, T8 1 L D) s (7-7)
where 11 is the input vector as described previously,
and where

Et £ [§t] and 9{ € [Et] (7-8)
with [é&] and [Etl being the discrete sets of ad-

missible values. These sets of admissible values are
termed feasible time regions of the respective vectors.
In addition, these feasible time regions must satisfy
the following conditions:
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(8¢] e [8] and [D] e [P] (7-9)
where [§] and [D] are physical constraints on the
system. The computational scheme of dynamic program-

ming requires that the set [5] be a set of discrete
values, namely [5] = [(gl,...,gm)].

The system effectiveness at the stage t is
measured by the monetary performance index, Rt(E{).

The objective is to maximize the sum of all returns
generated for every stage t l,...,Nt. This is ac-

complished,by selecting a particular set of the vector

Et’ say Q{, ¥te= 1""’Nt‘ Hence, in mathematical
terms it can be written N
t
FNt{gNt) = r[r:ax ; IR (D) » (7-10a)
anc
S * %Gy Lo ) 7:108)
S, ¢ (5]¢lg, (7-10¢)
and
D, = [2.] & [2] (7-10d)
The objective function of Eq. 7-10a can be rewritten
read
ﬂ -1
FNt(gN ) = Eax {RNt (Dy t} + gax E 1 R, (D)}
toAN B
(7-11)
By a simple analogy it is cbvious that
il
max RofD.) =B, (S 43 (7-12)
B S e

Thus, the recursive mathematical formulation of the
multistage dynamic optimization becomes similar to the

formulation of the allocation problem, notably,
Ftcét) = max {Rt(gt} + Ft_1(§t_1j} 2 _
D (7-13a)
=
t=1,. Ny
Bp B BB e Loy B34 (7-13b)
S, ¢ [5,]1 €[], (7-13¢)
and
7-13d
D, e [gt] e [D]. ( )
The function Ft[§¢) is sometimes called the state
function. In this study the term state function is
used interchangeably with the stage return. It should
be pointed out that in the formulation of Eq. 7-13a,
for t=1, F [-} = FO[-] = 0, as in the allocation
problem.

The remainder of this section incorporates the

components of the hydrologic system described in



Chapter III into the above mathematical formulationms.
The system of Chapter III is first treated as a two-
state system. A distinctive feature resulting from the
existance of feedback processes and the methods for
solving this type of problem are discussed later. The
variables to be used in the further discussion and
their relationship to the vectors S I , and D are

"'t’
outlined. The state vector, S_, consxsts of the state

of the surface storage subsys_gm S,, and the state of

the underground storage subsystem, Vt' namely

St
§t = " . (7-14)
t
Here, §¢ should not be confused with St'

The decision vector, 9«* consists of allocations

to each economic activity, which in the previous sec-
tion were denoted by XppeweaXoe Here, since the al-

location in time is required as well as the allocation
among the users, the decision vector becomes

1t
X
2,t (7-15)
P-t =
_xn't..
The input vector Et consists of all the vari-

ables that affect both the surface storage subsystem
and the underground storage subsystem. Note that the
natural outflow from the surface storage subsystenm,
which now becomes controlled release, is not a com-

ponent of 51. Thus,
t e[ e o o8] (7-16)
~t t e B¢ 9 9 9 9
Matrices of constants, ED and g{ are denoted
as follows:
1 I e Y
En"[o 6 o]- (7-17)

a 2xn matrix with n the number of economic activi-
ties (as in Eqs. 7-1 and 7-15), and

1. =1 1 0 I

51'[0 o 0 0 0 1 -1]' S
Using Eq. 7-14 through Eq. 7-18, the transform function
of Eq. 7-7 becomes
Sp = TeBear Ler D) = Seey * S5 L -G 0
(7-19)
or, in explicit form, after it was rearranged,
i u 0
Sy #i8p Ty T =B (7-200)

and
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= u -
Vo % Sa ~i (7-20b)
In Eq. 7-20a, qt = qt + q: + qz - q , and the term
qt Pug Ve By

With the variables defined as above, and with the
developments of the preceding section, one can proceed
with the discussion of the multistage dynmamic optimi-
zation. Keeping in mind that the principal goal is to
optimize the resource utilization over the project
lifetime as well as among the potential users, the
total benefit can be expressed as

Blxy o) = Loy 000 00 # com ¥ By g TR DT ® e

¢ I8y glxy 0 # cor gy X T+ s

¢ [31,Nt{"1,nt) Hione ¥ gn,Nt(xn,Nt)]

t n
i zzx i§1 1L,el%,d0 (7-21)

Here the function g t(-) gives the return from the
'

activity, i, during the time increment, t.

The optimum return is obtained by maximizing the
sum of benefits given by Eq. 7-21, namely

N (SN » Vy ) = max {B{x )]
" *i,t
N
Et Z (x; )}
= max { 85 ¢+ (% .
x. . t=l i=1 1ot
1,t
i=l,...,n
t=1,...,Nt
(7-22a)
5 =8 + qi qu (x + F 2o
t t-1 t t 1:% ) T il
(7-22b)
T u "
Vt = Vt-l + qt - qt i (7-22¢)
and
u
By =008 g Ve 4o 8 ) - (7-22d)
Taking q: as defined after Eq. 7-20, the ex-

pressions of Eq. 7-22 can be rewritten in the following
form Nt

F{SN,V}amtI[m Ig 05,010
a0 1 Feam (7-23a)
S " Sy 0 * 9 - 5 -2



(7-23c)
and

8100

iy (7-23d)

u
U =98 q0 Veop
It is readily seen that the right-hand side of Eq.
7-23a can be written as

Ne

0
max tzl £.:0) »

} =
t

(7-24 )
where fn t{-] is the solution to the equality con-

straint allocation problem as outlined in the preceding
section, with

n
Q
fr,e(0p) =max ] gy o (x; ), (7-25a)
X, ,i=1
i
xi,t e 8y (7-25b)
X o]
it 29 (7-25¢)
[s]
9 € [x], (7-25d)
and
- WD
L TR T M (7-25¢)

Finally, the mathematical formulation of the multi-
stage dynamic optimization problem becomes:

N
t
Fy (Sg 5 V) amax § G.(a)),
Nt Nt Nt o jbwt 8 qt (7-26a)
9t
i u o]
St = St‘l + q + qt = Qg (7-26b)
= r . u a
Vt = Vt-l * 8o G (7-26¢)
and
u
qt - q.u(st_ls Vt_ln Stn Vt) ¥ [7'2651}

where Gt () replaces fn t(-), since n, being the
Ll

number of activities, has no significance in the
further optimization process. The problem as formu-
lated by the set of Eq. 7-26 fits into the general
scheme of the multistage dynamic optimization given by
the set of Eq. 7-10, for which a recursive relation is
given by the set of Eq. 7-13. It should be noticed
that the process described by the constraint set of
q. 7-26 is a feedback process.

In general, there is no explicit relation, which

gives qg , satisfying the relations of Eqs. 7-26b

through 7-26d unless the exchange flow can be expres-
sed as a linear function in both S and V, or some
other simplification is possible. For example, if

q: can be approximated by the system states at the

stage t - 1 only, namely qi = qutst—l’ Vt-lj’ then

iteration will not be necessary. In any other
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situation an iterative process will be required to
find the solution to the three equations 7-26b, 7-26¢c,
and 7-26d.

7-4 Reduction of the State Vector

So far, only the generalized aspects of the multi-
stage dynamic optimization (MDO) were outlined. It
was demonstrated that the MDO can be applied to a water
resource project characterized by a feedback process,
i.e., in which an underground storage subsystem is
coupled with a surface storage subsystem. The mathe-
matical formulation of the MDO as presented in Section
7-3 is known as two state variable (S and V) dynamic
programming. The two state problem represents a time-
consuming computational process as compar d to the one
state problem. Also, the computer memory required is
much smaller in the one state variable problem. For
that reason, the simplification in mathematical for-
mulation, with no loss of accuracy, may prove
beneficial.

A remark was made previously concerning the func-
tional representation of the underground exchange
flow, q%, by means of the system states at the stage

t - 1 only. The form suggested would eliminate
iteration, but it might also affect accuracy. Whether
this simplification is feasible or not must be deter-
mined for each particular computational case.

It is necessary to outline further possibilities
of simplifications which may exist because of the
nature of the water resource system under consider-
ation. To do so, the essence of the computational
algorithm is examined in detail. To that end, the re-
currence relation of the mathematical formulation
given by Eq. 7-26 is written in its general form,
namely,

¥ (8.5

_ o
¢ 8¢ Vt) = m:x {Gt(qt) + F

a,

t-l{st—l’ Vt»l}}’

t=l,...,N, (7-27a)
u o .

Stsst_ld'qt»ﬁqt-qt' (7 27b)
- - u (7-27c)

Ve = Vg v~ G

and
u

Qe =9, (8 95 Vo g0 800 V) (7-27d)

The stage return Ft[.,.) is evaluated at a set of

discrete values of both state variables, S and V,
by a computational algorithm consisting of several
steps which can be described as follows:

a) Take a particular value of the surface storage
subsystem state St’ say s, ;€ [S3], and at the same
time a particular value of the underground storage
subsystem Vt, say Vt,j e [V];

b) Depending upon the observed values of qi and
q:, there will be a set of feasible values of states

of both the surface storage subsystem, S_ ., and the

t-1
underground storage subsystem, Vt-l’ say st—l,k €

v
(5] t-1,1
the system states can be transformed into St

, and £ [Vt-ll’ respectively. From this

S¢,i°



and V= Each pair of values of S and

t-1
Z)' will determine a value

. s
g t,]
t_l,onamely (s
of q. =g 4
c¢) Evaluate the return for every feasible value
of qg =q 70 and its corresponding pair of values,
3

t-1,k" Ve-1,

v from the relation
(st-l,k' t-1,2"

Re(ap,7) = I8, (3,00 + Fry (g 0 Veap, 218 07-28)

d) Find the maximum return over the whole set of
pairs of the feasible values, (st-l 2Ve-1 zJ, to
» »

obtain the best return corresponding to the chosen pair
of values, [st p W j). namely
L | ’

Felse v ¥, 5)

e (6ylag 1) * Fy_y(5p g poVeoq, )33 07-29)
k,1

e) Repeat the steps (a) through (d) to cover the
whole set of pairs of values of the states S_c¢ [5]

and Vt e [V] to obtain the function Ft[St, Vt]'

Assume now that at the stage t - 1 there is only
one value of the underground storage subsystem state,
Vt 1 corresponding to each discrete value of the sur-

face storage subsystem state, St e namely, that there
exists the following relation:

v =V (S

541% Maa )i (7-30)

t-1
from which the underground exchange flow can be
expressed as

u_
Qe = UQISe 10 Ve 1 Spp)s Spr Vel

= . 7-31)
9,08, 15 Spr V) £ ]

Substituting Eq. 7-30 and Eq. 7-39 into the mathemati-
cal formulation of the multistage dynamic optimization
of Egs. 7-27 yields

F (S, V,) = max {6 (a)) + F_, (S, )}, (7-32a)

* Qo

4t

tel,oa Ny
s, =S, +qteq(s, ., 5,V)-q, (7-32)
t -1 T % T e Y Yy -

and
: o

Vt = vt~1{st-1] ¥ qt . qu(st-l' St' vt) [7—52C]

Keeping in mind that the computational algorithm as
described previously by the steps (a) through (e)
assumes two feasible values of the surface subsystem

state, s, and S,» at the stages t - 1 and t,

respectively, it is readily seen that Eq. 7-32c has a
unique solution for Vt' When this is inserted into

Eq. 7-32b, a unique solution for q: is obtained.
With a value of q: defined in this manner, the return

is evaluated from Eq. 7-32a. Clearly, for the given

value of the surface subsystem state, 5t =Sy 4 and
’

for any value of S, = there will be a value

S¢o1,i°

of the underground storage subsystem at the stage

i Vt = However, when the optimal value is

Vi g
%
chosen by step (d) of the above described procedure,
there will be only one value of the underground storage
subsystem uniquely corresponding to the value

5t s st.i' Hence, the state of the underground storage

subsystem, Vt = Vt(StJ, as assumed in Eq. 7-30.

The described procedure eventually leads to the stage
t = 1, whereby the values of the state Vo = VO[SO)

should be known. The legitimate question can be
asked: Does one know the initial state VO correspond-

ing to the initial value of the state So? The answer

is no. However, several other factors should not be
overlocked. The underground storage cannot be con-
trolled directly, but rather it is controlled by con-
trolling the surface storage subsystem, since the
surface and the underground subsystems are directly
related.

Therefore, the underground storage subsystem,
Vt’ cannot be held at any arbitrary level for a given

value of the surface storage subsystem, St. Instead,

there is only a limited range of feasible values of
the state Vt for any given value of the state St.

Thus, taking a convenient value of the state Vo to
be associated with every value of the state S0

should not affect significantly the evaluated returns.
Yet, it greatly reduces the computation time and
computer memory required. If the optimum is expected
to be affected by the assumed initial conditions of
the state V, it is easier in many cases to evaluate
the optimum with one state variable and several
initial conditions than with the two state variables.

7-5 Dynamic Programming with Integrated Inputs and
Outputs

Multistage dynamic optimization is essentially an
allocation process in time, by which an optimal policy
is obtained. This optimal policy depends on the return
function and is subject to dynamic constraints, The
stage returns are evaluated at discrete time points and
specified discrete values of the system state. The
system behavior between the two discrete time points is
assumed known. Often it is linearly approximated.

The time intervals between the discrete points can
be of various lengths. Computational effort for sol-
ving a2 dynamic programming problem depends on the num-
ber of time intervals. Reduction of computational
difficulty by decreasing the number of time intervals
often results in inadequate accuracy. When the time
intervals are small, not only the number of stages in-
creases, but the number of discrete points of the sys-
tem state must also be increased to make them compatible
with the system inputs and outputs over the given time
interval. This may cause an increase in both the com-
puter memory and computer time requirements.

As mentioned earlier, the time increments for
medium and small reservoirs, particularly under the
conditions of large variations in river flow, should
be relatively small. This reduces errors caused by



high variations of inputs. A hypothetical example
illustrates the situation which is frequently encoun-
tered in dealing with a water resource project. Let
the reservoir lifetime be 50 years; then N 50 x 365
= 18,250 days. Solving an optimization proﬁlem with
18,250 stages is out of the gquestion in most practical
cases. If, on the other hand, a three-month time in-
terval is chosen, then, in the cited example, there
will be Np = Nt/r = 18,250/90 = 200; an acceptable

number of stages. However, the accuracy of the com-
puted optimal policy may be insufficient when the time
interval is three months. It is not enough to know the
three-month sum of the inputs and the outputs, since
the realization of the time series should be known
completely. In addition, the simulation of the be-
havior of the underground storage subsystem is based on
the physical relation described by the states of the
two storage subsystems. That is, it is based on the
evaluation of the exchange flow, qg, which in turn

affects the subsystem states. Such a feedback process
cannot be described adequately only by the initial and
the final conditions of a large time increment.

A new method of computation is proposed here. It
is assumed that simplifications of the preceding
section (reduction of the state vector dimension) have
been made. The proposed method is based on the assump-
tion that the allocation, q°, over the time interval of
length T can be expressed in terms of the total
allocation during that interval, Q%, namely

4 = 9@ (7-33)

Here, q:
unit t e [(T-1)1,Tt], with T = l,...,NT

index associated with the time intervals of length
The continuity condition requires that the following
condition be satisfied

is the release of the resource during a time
being an

T.

t
T
%=1 a, (7-34)
t:tT-l+1
with tT-l = (T-1)t, and tT = Tt. The simplest ex-

ample of the previous assumption is a uniform alloca-
tion each day over a three-month time interval.

The objective is to decide what is the total
amount of the resource to be used over the three-month
time interval. According to the assumption described
by Egq. 7-33, the return over the time interval of

length 1 is
“r
) G, () = ] 6 lag(QD] = Hp(Q) ,  (7-39)
t=ty_,*1 t

where Q; is given by Eq. 7-34. Using the objective

function with only one state variable, the optimal re-
turn can be expressed as

Nt
) = max |}
t=1

FN (s

o
G (a,)
T

) = F, (S
Nop NN
A
Nc (= JP s
= max L Gy lag(Qp]
0,.0, t=1
9, (Qp)
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N, tT
0,.0
= max ) max{ ] G la (Qp 1t
o T=1 o t=tT_1+1
Q 9
o _ 0
-3 E q, = QT

N,
ET Q%
max 3
b Hp(Qp.

(7-36)

which is the new objective function to be solved joint-
ly with the constraint set. The last transition in

Eq. 7-36 was made possible by virtue of the fact that
the inner maximization is an ECAP.

The constraints must also be transformed to accomo
accommodate the new formulation. To that end, the
constraint operating on the surface storage subsystem
for each time unit, t, is rewritten for the interval of

length t. Summing up the set of equations
5 =g . qi 4o -
K+l k k+1 " 9ke1 T %
i u 0
Ska2 ™ Skel  * %e2 ¥ %ke2 T ka2
@ al u o
%63 T %ozt Y3 Yes T ks
(7-37)
A ; i u 0
Sk+1 a Sk+t-1 P Qe Gker T e
yields ket .
S 28 % T @ el -q). (7-38)
k+t k - t t
Let the beginning of the (k+1)-st time unit corres-
pond to the beginning of T-th time interval. Then,
t=%k= (T-1)1 = tT»l’ and t = k+t = (T-1)t + 1 = T1 =
tys 50 that Eq. 7-38 becomes
g i u o
Sp= Bp = B * ; (g * qp - 4y) - (7-39)
t-tT_1+1

For convenience, the notation can be simplified as
follows:
i u o
Sp*Sp g G Q- Qs £7-49)
where the correspondence of Eq. 7-40 to Eq. 7-39 is
obvious. Following the same reasoning, the second con-
straint can be rewritten as

- r_ u -
VT = VT-l + QT QT = (7-41)

V.
T-1
storage subsystem at the beginning agd at theuend of

T-th time interval of length 1. QT and QT are the

where and VT are the states of the underground

summatigns of ths recharge and the underground exchange
flow, N and s respectively, over the same time

5.,V Vt)

interval, with q: =q(8 o

t-1’ t-1’
The specific nature of dynamic programming is re-
flected in the necessity to evaluate the stage return
at a number of specified discrete values of the system
state. The subsystems that are dealt with in this
study are linked by a feedback process. For that



reason it is not generally possible to find a value of

0
Qt
value to another when integrated over the time interval
g ot

that transforms the system state from one discrete

Let the state of the surface subsystem take dis-
crete values SpopreesSq o For a specific value,
. L] Ll

Sp-1 3 = Sl, of the system state at the beginning of
]

time interval T, and an assumed specific value of the
decision variable, Q% = Qp 4+ the state of the system
b

at the end of the interval T will be transformed into

f i u 0 0
§% = sy gt Qp+ Qp - Qp = Sp(Qp sy )

The value of Sf = ST(-)

discrete values for which the stage return is to be
evaluated. Because of the dependence between V and
S, the state of the underground storage subsystem at
the end of the interval T can be described by

(7-42)

is not necessarily one of the

" (4]
Vo g.x " VT(QT,RIST-I,j}’ (7-43)

where

o o
QT,RIST-i,j means QT,k given S5t

Conceptual visualization of the above process can
be given in ggaphical form as shown by Fig. 7-1, where
the curves S* = ST(-) of Eq. 7-42 and VT(-} of Eq.

7-43 are constructed as functions of Q; so that each

Qf

Release

8 Minimum

Minimum

Release

__...__]6. _______

Maximum
141 Allowable

Storage
8" rg\

2+ Allowable

curve is parametrized by a discrete value of the state
_ i
2, B R

Once the graph is constructed, it is possible to
evaluate the stage return at a set of specified dis-
crete values of the state ST as follows:

(1) Select a specific value of the surface state,

ST =Sp for which the stage return is desired;

$ ]

(2) Drawing a vertical line through ST .
the intersections with the curves s determine

T'l)j
the values of the output Qg j;
r

(3) Maximize the return over all feasible values

of § i.e., find:

-1’
0 -

Fr(Sp = sp 5) = g He(Qp 4) ¢ Fp 1 Gpoy = 812,59

%,

(4) Find the value of the underground storage
subsystem state, VT’ corresponding to the pair of

values Qg 3 and o1 j

return and denote this by v

which maximizes the stage

1,1 = V18,103

(5) Store the values S s

[+ ]
1-1* 51 Vo1 Vo O

and Q;; and,
(6) Repeat steps 1 through 5 for all values of

ST = Sp 4o 3w Y.

Maximum
Storage

1 L
vy, 40 20 10 0 10
Pig. 7-1.

Time Series q: and q:.
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Empirical Functions Relating S, and VT to S

20 30 40 50 60 70 gf-g,

and Q; for a Hypothetical Realization of



Chapter VI1II
APPLICATION OF THE MODEL

The application of the model described in the previous
chapters is demonstrated by two examples. The first
example is based on a completely hypothetical set of
data. It demonstrates the model application to a
hydrologic system described in general terms. However,
simplification is made to reduce the number of state
variables from two to one.

The second example partially pertains to Lake
Powell. It shows the procedure for finding the optimal
policy under the specific conditions outlined in
Scction 4-5. In this example, data observed during
actual reservoir operation were used to identify the
system. The economic model was unavailable and it had
to be hypothesized. For this reason and due to some
other factors to be discussed later, no conclusion con-
cerning the system's future operation should be drawn
on the basis of results obtained by this computation.

Common features of the two examples are that the
are discrete sequences of monthly observations.
vear was subdivided into four periods, each of
them three months long. Furthermore, it was assumed
that the water release over each period is uniform.
Nevertheless, it can vary from one period to another
and from one year to another. Even though the return
functions were hypothesized, they were constructed to
reflect customary higher water demands during dry sea-
sons than during wet seasons. Evaluation of the re-
turn is based on a five percent interest rate.

Jata
Fach

8«1 Example I

Maximization of the gross benefit was obtained by
solving a multistage dynamic optimization problem. The
obhjective function is given by Eq. 7-36 with the state
constraints described by Eqs. 7-40 and 7-41. In addi-
tion, constraints reflecting the system size are
incorporated.

The mathematical formulation of the problem is
N

T
= max | I HT{Q$)}

Fi €850
Ne Ny £ T
T

’ 0
= max fHT{QT) + F

u 7.1 G2 Y s (8-1a)
Qp
T Lywanitly
£ 9 i u 0
S = Sy * Q4+ Qp - Qs (8-1b)
= g u
Vo=V * Q- Qs (8-1c)
20 < 5. <120, o

(8-1e)

and

0 " B stea N
g = 0.047 Nt(Vt Wt] 7 t=1,2, Ny (8-1£)

The above formulation is computer processed for
Nt = 120. This implies a sample size of ten years of

monthly data. In addition, the number of stages of
computation was Np =40, and 1 = 3. The terms

1 g% o® and @& of Eq. 8-1 are defined in Eg. 7-38
QT' QT, [oan QT of Eq. 8-1 are defined in Eq. 7-39,

They represent summations of monthly values of the

corresponding quantities. The moving boundaries of

summation over 40 three-month periods are defined as
lower bound: t = Tyt 1= (T-1) T+ 1 (8-2a)
and
upper bound: t = ty = T (8-2b)

This vields the respective limits {tT_l + 1, tT)

1,3), (4,86), (7,9),..., (118,120},

which correspond to the time periods
T= 1y 2y S

The surface flow components of Eq. 7-20 other
than the channel inflow, q%, were assumed to be :ero,
that is

P

d e i
qt = qt = qt (8-_)}

so0 that

qg = 4;- (8-4)

In order to evaluate the exchange flow, q:, of

Eq. B-1f, the following linear relationship was assumed:

W, = 2.0 + 0.18 S, (8-5)
From Eq. 8-la it is clear that the seccond state
variable, V, was eliminated from the abjective

function according to the explanation given in Sec-

tion 7-4. In that section it was stated that the
initial value of the V-state at the beginning of the
stage T =1 is needed. This relationship was
arbitrarily assumed as

U= 1407 W, (8-6)
where w° is obtained by Eq. %-5. It should he ob-

served that the condition required in Section 7-4,
namely that V be a function of §, is satisfied.

Figure 8-1 shows the sequences of assumed dis-c
crete monthly observations of the channel inflow, s
and the recharge, q:, t=1,...,N. The value of
water released for respective time periods is described



by the four return functions, HT['J, as given in

table 8-1 and Fig. 8-2, where the time period each re-
turn function refers to is indicated. As already out-
lined, the water release during each month at the time
period under consideration was assumed uniform. This

fact is related to the requirements of Eq. 7-33 by

0 _ 0,40, _ 0 e
a9, = q4,(Q) = Qp/v, (&-7)
where qz is the quantity used in Eq. 8-1b to carry

on the simultaneous process of integration of input and
output variables.

Actual computation was performed over discrete
sets of points. The sets are constrained by the re-
servoir size and the water release of Eq. 8-1d and
Eq. 8-le, respectively. The set of Q2 values con-
sists of nine values with increments of three, namely

[Q7] = [0, 3, 6, 9, 12, 15, 18, 21, 24] ,  (8-8)
while the set of § wvalues is given by

[Sy] = [20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120]. (8-9)
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Fig. 8-1. Hypothetical Monthly Inflow (Upper Graph)
and Monthly Groundwater Recharge (Lower

[T w
Q m g @
T T Ll 1

Period Il (Month 4-6)

[ o o B ]
N A O @
T T T T

\Period il (Month 7-9)

Return H{Q%)
- = — = M
N L@ O
™7 T T 7

/-—F\arlcd IV (Month 10-12)

o O
T T

‘\Peviod 1 (Month 1-3)

Il L I i 1 P 1 |

(<] 9 2 15 18 2 24
Uniform Water Relegse Q%

O N & @

o
("]

Fig. 8-2. Return Functions of a Uniform Water Release,

Q%, over Three-Month Periods.

The process of computation that is carried out for
every stage T = 1,2,...,40 was described in Section
7-5. Typical results of this procedure are presented
graphically in Figs. 8-3 through 8-7.

Figure 8-3 gives the final values of reservoir
state, Sf, at the end of period T. These curves were
obtained under the condition that the reservoir state
at the beginning of the given time period was S*, for
various values of uniform water release (2, and fora

particular sequence of input data realized during the
given time period T. Similarly, Fig. 8-4 g%ves the
final state of the underground subsystem, V*, under
the above condition. Fig. 8-5 gives the sum of the

exchange flows, QE, obtained by evaluating q: from

Eq. 8-1f and summing them over the period (t. ,, tT}
of Eqs. 8-2a and 8-2b.

Graph).
Table 8-1. Return Functions of a Uniform Water Release, Q;, over Three-Month
Periods.
Uniform Water Release Q?
Period Month 0 3 6 9 12 15 18 21 24
1 1-3 0.0 4.3 Tl 9.1 8.5 7.2 5.8 4.2 3.0
2 4-6 0.0 8.3 15.6 21.7 26.4 25.3 24.6 22.0 19.2
3 7-9 0.0 9.5 17.6 23.8 28.9 32.0 34.5 33.2 32.0
4 10-12 0.0 5.6 9.9 9.1 8.6 T8 6.0 4,6 Fad

33



Because of nature of the computation performed,
it can happen that the assumed values of uniform water
release, Q2, deplete the reservoir below its minimum
allowable value (20). Under some other conditions, the
spillover from a full reservoir can occur. These facts
are taken into account in the present scheme by virtue
of the results depicted in Fig. 8-6 and Fig. 8-7.
Figure 8-6 represents water deficit, QT, with res-

pect to what was assumed to be a uniform release. That
is, it gives that quantity of water that would have
been released if the reservoir had been drained below
the mininum state at the uniform rate Q7. Since the
reservoir must not be drained below its minimum allow-
able content, Q% is nonexistant. By the same token,

spillover, Q_, results from having the reservoir full.
Thus, actual release is obtained by
i i
20 T
[
100} -
80 -
st eof-
2 )
40
20
0 e L | N NI O CHNE AR, DOV )
O 2 4 6 B8 1012 14 16 18 gO 22 24
Uniform Water Release QY
Fig. 8-3. Final Values of the Surface State, Sf,
as a Functionof Uniform Water Release,
Qf, and Initial State, Sl, at the
Stage T. .
24 Sl=f20
_ | s
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20F 90 =
18 80

sz
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f i -
Vi 12 40
10 30
20
8 - =
6 - —
4 .
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O L L 1 1 1 1 1 1 1 1 1
0 2 4 6 8 1012 14 16 18 20 22 24
Uniform Water Release Q%
Fig. 8-4. Final Values of the Underground State,

V*, as a Function of Uniform Water Release,
Qf, and Initial State, S, at the Stage T.
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Fig. 8-5. Exchange Flow, Q¥, as a Function of

Uniform Water Release, Q?, and Initial

State, Sl, at the Stage T.
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Fig. 8-6. Water Deficit, Q%, with Respect to the
Assumed Uniform Release, Q%,us a Function

of Q% and Initial State, S, at the

Stage T.
rel _ .o n 5
Q" = Q- Qp Qs (8-10)
while the useful release is given by
ben _ o n
Q=0 - Q. (8-11)

From Fig. 8-6 it can be seen
when the initial reservoir state, sl,

that the deficit occurs
is low and the

release rate, Qg, is relatively high. The spillovers

result from relatively high initial state, s*,  and
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Fig. 8-7. Water prllover QT' as a Function nf Uniform

Release, QT and Initial State, S!, at the
Stage T

relatively low release rate, Q;, as shown in Fig. 8-7.

1t is emphasized that the actual magnitude of the de-
ficit, Qg, depends not only on the initial state and

rate of release, but also on the hydrologic sequence
realized during the given interval. It shoyld be
noticed that the final reservoir states, 5", of Fig.
8-3 never violate the boundary conditions described by
Eqs. 8-1d and 8-le. Instead, as soon as the S
reaches the lower boundary (smin = 20) it coincides

with it for all higher release rates, Also, when it
touches the upper boundary (smax = 120) it is identi-

cal with it for all lower release rates.

From the results represented in Figs. 8-3 through
8-7 for every feasible value of the new reservoir state
described by Eq. 8-9, the following is evaluated:

- the optimum return, FT(ST}

- the beneficial water release Q?en

- the old reservoir state, S from which the

T-1"
system was transformed into the new state, ST

- the state of the underground subsystem VT[ST)-

Vf, at the end of the time interval T, and

- the total value of the exchange flow, Q;.

Table 8-2 illustrates a
results obtained for every stage
this particular case, the results of the last stage are
shown. From Table 8-2 the maximum‘value is selected,
that is max Fyu (S,,) = 567.52 = F . The corresponding

s 0740

40
reservoir state at the end of period 40 is 5*40=30.

Knowing the value of the reservoir state at the end

of this time period, it is possible to find the value
at the end of the preceding time period. The procedurc
is carried backward until the optimal policy is defined.
The optimal policy is given in Table 8-3 and Fig. 8-8.
The corresponding optimal releases constitute a sequence
of a periodic nature as should be expected from the
periodic return functions. Statistical properties of
water release during each period of the year are given

typical summary of the
Te®)iiousN: In
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in Table 8-4. Fluctuations of the optimal release are
relatively small as indicated by its standard deviation.

8-2 Example 11

This example utilizes sequences of actual data
observed at Lake Powell during twelve years of
operation. The reservoir characteristics are as
follows: maximum reservoir capacity smax = 27-10

6

. om 20RO
min

The reservoir content below approximately

its
6

acre feet, of which the dead storage is §

acre feet,

6
6-10" acre-feet cannot be used for power generation.
For reasons of obtaining rounded values of stgrage
states, the minimum storage was assumed 3-10° acre
feet.

Data colleetion. The process of filling the
reservoir began on January 1, 1963, with a simultaneous
observation of various data. The sequences of data
available for this research represent the channel in-
i Also,

surface reservoir states- St’ underground storage,

flow, evaporation q:. and release q:.

Vt, and exchange flow, q:, were observed for the
years 1963-1974 inclusive. Monthly values are given
gor tom 152N e where Nt = 144 (12 years of
data). It is pointed out that the sequence of exchange
flow, q¥, was obtained from the budget equation (see
Eq. 6-8) and that the underground subsystem content,
Vt, is the summation of the qg, namely

-Zq

y=l W (8-12)

Figure 8-9 represents monthly channel inflow, q:

(lower graph). The observed axchange flow, q:. along
with the values simulated, q » @re dep1cted on the
upper graph. Observed states %of the respective sub-
systems S and V are presented in Fig. 8-10. From
that it is seen that the reservoir has not yet been
filled. This leads to the conclusion that the system
never reached the steady state.

It was already stated that the evaporation, q:,
is a function of the area from which evaporation takes
place. Thus, observed values, q:, which represent
total evaporation from the lake surface, were modelled
into e, that is, the evaporation from a unit of sur-

are given in
Fig. 8-11.

face area, Average monthly values of e
Table 8-5 and graphically depicted in

Reservoir volume and area as functions of water
elevation are shown in Fig. 8-12, while their functional
relationship (assumed to be linear) is shown in Fig.
8-13. This relationship is given by

A. = 0.0185 + 0.00546448 S , (8-13)

where Ar is the reservoir surface area in millions

of acres and S is the storage content in millions of
acre feet. Expression 8-13 is needed in order to pro-
vide for a convenient evaluation of qe at any state

that the surface reservoir happens to be. Equation
5-11 is used to calculate the evaporation, qf. In
Fig. 8-14, the observed value of underground storage,



Table 8-2. Summarv of Results of Computation at the End of Stage T = 40.

ben
J 51-_1 J) ST(J] N'T_I(J} ‘-‘T(JJ FT-I J) FT(J) QT (J)

1 20.00 20.00 7.95 8.30 561.85 565.52 14.04
2 30.00 30.00 9.25 9.47 562.82 §67.52* 14.17
3 30.00 40. 00 10.77 10.04 501.25 566.79 3.60
4 40.00 50.00 12.356 11.61 559.94 565.17 3.55
) 60.00 60.00 14,01 14,03 550,18 563.83 14,35
6 60.00 70.00 15.68 14.97 558.51 562.99 3.43
7 70.00 80.00 17.38 16.70 556.33 562.08 3.37
8 80.00 90.00 19.09 18.45 554.00 560,05 3.32
9 90,00 100,00 20.82 20.21 550.99 557.67 3.27
10 100.00 110.00 22.55 21.99 ., 545.98 554.65 5.22
11 110.00 120.00 25.67 23.78 525.45 548,42 3.17

liuble 8-3. Optimal Policy of the State Transformation

and Water Release, Table 8-}, Stutistical Froperties of Optimal Water
. . = = 2 . Release
’ 11 e 51 & o % Fr
- PERIOD

I ] 100.0 1o 110.0 E.61 8.43 1 2 3 4
= it 10.0 9 100.0 18.45 31048
3 " 100,40 8 90,0 19.63 63.08
4 ) 0.0 9 100.0 5.57 72,45 O =
& 4 100.0 9 100.0 16.13 78.50 q 12.24 15.65 17.52 §.98
t 4 100.0 ] 90,0 16.385 10117 R }
7 § 0,0 7 80,0 21.39 131.14 o 5.99 3,72 3.46 3.19
) 3 80,0 8 90,0 8.34 139,35 :
b b 40,0 9 100,0 8,25 147,00 "
1 9 100,0 $ 100.0 .40 166,42 i 15.92 15.85 11.88  10.18
i ] 100, 0 8 90,0 19.25 195,75 —_—
12 [l 90.0 4 100,0 7.22 204.02
1a 9 100.0 9 100.0 15,67 209,69
i 9 100.0 4 %0.0 20.41 228.21 :
i H 90.0 7 80.0 15.34 254,77 V, was regressed on the corresponding values of the
it 7 80.0 Ll 90.0 4.2 260.82 surface reservoir observed states, S.
17 B 90,0 9 1000 6.30 266.61
14 § 100.0 ] 100.0 12.08 287.27 u
19 9 1000 8 90.0 17.31 313.85 ldentification of the exchange flow, q,, is done
l? ~ lg:-g : ::g-g e :gi:g Py Eq. 4-75, where recharge, oF. is assumed to be
3 9 100.0 8 %0.0 16.14 345,52 zero. In addition, the zero intercept, a_, was
23 8 #0.0 7 :g.o 13.96 368.59 introduced hecause of an improvement of the model. The
It | 7 80.0 ? .0 11.88 375.02 s m .
s 5 330 4 bt i 3038 parameters are evaluated as
20 7 0.0 6 70.0 20.26 396.45
: ° 70.0 5 60,0 14.15 418,53 o -0.01952 = 0.4140¢ 2 = -0.07181.
2 5 0.0 5 0000 15035 a246) = 1952, ‘o) = 0.41400, and u, - -0.07181
2 5 €0.0 S 60.0 13.95 429.80 ) o .
0 5 60.0 4 50.0 15.54 426,53 Return functions, ILrl'Q.l.], are assumed since the
il q 50.0 2 3.0 235.95 468,51
i 2 :o.a 2 30.0 8.06 474,84 monetary vilues of water releases were not availuble.
o $ o g o e e These functions are given in Table $-6 and are schema-
i 2 30,0 1 20.0 13.70 515.93 tically shown in Fig. 8-15. As in the preceding exam-
- ; ig-g § ig-: ;g_-’; if“:: ple, four roturn functions are taken to reprasent four
1% N 0.0 H 30.0 16,68 542,38 seasons during the vear, where eacn season is of equai
» 3 40,0 2 30,0 16.56 562.82 length, 1 = 3. The water releases are assumed uniform
o 2 0.0 ? 30.9 1417 ser.82 within any given period for any level of output, Qg.
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Table 8-5. Monthly Evaporation, e, from a Unit of Reservoir Surface Area.
Month 1 2 3 4 5 6 7 8 9 10 11 12

et[ft] 0.169 .0.163 0.204 0.225 0.315 0.360 0.420 0.422 0.372 0.327 0.297 0.234
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Based on these return functions and the results )
3 241 150 of system identification, optimization of the reservoir
3 2 operation was performed over a span of 12 years for
2 .g which inflow data exists. The mathematical formulation
s 20t 130 - of the optimization problem is
5 4
E 161 o = NT 3
£ 2 FNT(SN ) = max { g Ho(Q)}
2 T o t=1
£ 2} 90 E Qr
-
s
E 0
" ® = max (Hp(Qq) + Py, Sy )}, (8-13a)
(¢]
Qp
‘HDCI 31&0 T’l,--.,NT
Elavation h , ft
Fig. 8-12. Water Content, S, and Surface Area, Ay i " o
as Functions of the Elevation. St =Sr1* G Q% - Qs (8-13b)
i e
Qp = Qr - @ (8-13¢)
Table 8-6. Return Function of a Uniform Water Release over Three-Month Periods.
Uniform Water Release Q.?
Period Month 0 1 2 3 B 5 6 4 8 9 10 11 12
I 1-3 0.0 3.2 5.3 4.6 4.0 3.5 3.0 2.5 2.0 1:5 1.0 0.5 0.0
1T 4-6 0.0 5.5 9.9 12.7 13.4 12,5 11.0 9.5 8.0 6.5 5.0 3.5 1.0
111 7-9 0.0 6.2 10.5 14.2 12.4 10.6 8.3 6.2 4.7 2.4 1.8 L.l 0.7
v 10-12 0.0 2.8 4.6 3.9 3.0 2.7 2.4 2.1 1.8 1.5 I.2 0.9 0.6
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Fig. 8-15. Return Functions of a Uniform Water Release
over Three-Month Periods.

Gy = Af_ye.= (0.0185 + 0.00546448) S e, (3-13q)
te=1,.. “Nt

Ge = G * 8y ey -0y Qs T Leensatly (8-13¢)

G g Vg Ay ® L (8-139)

0o p z; s;e _ |:s zJo 2I4 e S (8~13g)

Surface Reservoir Content S, 10%cre-ft and
Fig. 8-14. Underground Storage, V, as a Function of o (8-13h)
the Surface Reservoir Content, S, 0.0 < Qp < 12.0.
Table 8-7. A Summary of Typical Results of Computation at the End of the Stage.
u u ben

J Sp.1 @) Sr (1 Oy (J) Qr(J) Fry () Fr(J) QW)
1 11.00 3.00 -.03 .28 299.70 302.71 11.48
2 5.00 5.00 -.04 -.04 301.02 303.34 2.63
3 7.00 7.00 -.04 -.04 301.40 303.72 2.62
4 9.00 9.00 -.04 -.04 301.85 304.18 2.61
5 11.00 11.00 -.04 -.04 302,29 304.61 2,61
6 13.00 13.00 -.04 -.04 302.90 305.22" 2.60
7 15.00 15.00 -.04 -.04 302,86 305.19 2.59
8 17.00 17.00 -.04 -.04 302.66 305.00 2.58
9 19.00 19.00 -.04 -.04 302.40 304,74 2.57
10 21.00 21.00 -.04 -.04 302.02 304.36 2.56
11 23.00 23.00 -.04 -.04 301.52 303,86 2.55
12 25.00 25.00 -. 04 -.04 300.31 303,16 2.54
15 27.00 <7.00 -.04 -.04 298,37 500,93 2.53
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The values of Q;, Q;, Q?, and Q? are obtained as
given by Eq. 7-39. Observe that q: of Eq. 8-13f is

given by q: = Q:/T. In this example NT = 48, MT = 144,
and 71 = 3, so that moving bounds of simulation are
analogous to those of Example I.

In Eq. 8-13d, evaporation, q°, was computed
Q p ay p

using only the reservoir state at the beginning of the
given time interval t. Of course, it is possible to
perform %amputation§ using the average value of the
areas At-l and At. However, this would require that

an iterative computing procedure be introduced. It is
felt that improvements due to this alternative approach
would not warrant its implementation.

28
26

1

\Monimum Storage

The computational procedure is very much similar
to that of Examplg I. The only difference is that the
exchange flow, 9., had to be carried on as a semi-

state variable instead of V_. The initial value of
the exchange flow required to fac&litate the compu-
tation of qT, was assumed to be q_ = 0.

A summary of typical results obtained at every
stage is given in Table 8-7. The final results of the
optimization, that is, the optimal policy of reservoir
transformation, is presented in Table 8-8 and in Fig.
8-16. Statistical properties of the water release are
given in Table 8-9, Figure 8-16 indicates, as in
Example I, that the optimal policy seemingly follows
no regular pattern. However, analyzing the statistical
properties of the water release leads to the conclu-
sion that the water release is, to a large degree,
regular and that it is periodiec.
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Fig. 8-16. Optimal Policy of the Reservoir State Transformation.
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Table 8-8, Optimal Policy of the State Transformation and Water

Release.

T JT-I sT—l JT ST q'l' FT

1 13 27.0 12 25.0 3.03 4.36
2 12 25.0 11 23.0 4.31 16.86
3 11 23.0 10 21.0 2.93 30.14
4 10 21.0 9 19.0 2.88 33.93
5 9 19.0 8 17.0 2.99 38.11
6 8 170 8 17.0 3.62 50.03
7 8 17.0 7 15.0 3.71 61.75
8 7 15.0 6 13.0 3.46 64.91
9 6 13.0 6 13.0 1.72 68.98
10 6 13.0 7 15.0 4.76 79.97
11 7 15.0 7 15.0 3.58 91.33
12 . 15.0 7 15.0 2.16 95.21
13 7 15.0 7 15.0 2.63 99.21
14 7 15.0 7 15.0 3.41 109.90
15 7 15.0 6 13.0 3.08 121.46
16 6 13.0 5 11.0 3.37 124.40
17 5 11.0 4 9.0 3.46 127.79
18 4 9.0 4 9.0 3.47 137.99
19 4 9.0 3 7.0 4.11 147.55
20 3 7.0 3 7.0 1.40 150.31
21 3 7.0 2 5.0 3.55 153.50
22 2 5.0 2 5.0 4.82 162.95
23 2 5.0 1 3.0 4.34 171.75
24 1 3.0 1 3.0 1.50 174.51
25 1 3.0 1 3.0 1.95 178.20
26 1 3.0 2 5.0 3.77 187.61
27 2 5.0 2 5.0 2.46 196.29
28 2 5.0 2 5.0 2.30 199.41
29 2 5.0 2 5.0 1.86 202.80
30 2 5.0 | 7.0 3.60 211.68
31 3 7.0 3 7.0 2.69 220.52
32 3 7.0 3 7.0 3.03 223.14
33 3 7.0 3 7.0 3.08 226,07
34 3 7.0 4 9.0 3.94 234 .68
35 4 9.0 4 9.0 3.20 243.60
36 4 9.0 4 9.0 2.94 246.14
37 4 9.0 4 9.0 3.16 248.90
38 4 9.0 4 9.0 4.61 256.80
39 4 9.0 3 7.0 4.46 263.90
40 3 7.0 3 7.0 3.51 266.02
41 3 7.0 3 7.0 3.32 268.59
42 3 7.0 5 11.0 4.11 276.37
43 5 11.0 5 11.0 4.51 283.30
44 5 11.0 5 11.0 3.03 285,56
45 5 11.0 5 S 11.0 3.1% 288.09
46 5 11.0 6 13.0 3.98 295.54
47 6 13.0 6 13.0 2.73 302.90
48 6 13.0 6 13.0 2.60 305.22

Table 8-9, Statistical Properties of the Optimal Water Release.

FRRIGOD

1 2 3 a
Q* 2.82 4.03 3.47 2.68
p 0.637 0.496 0.714 0.712
e 0.405 0.246 0.510 0.507
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Chapter IX
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Performance of a surface reservoir can be signifi-
cantly affected by a connected large natural underground
storage. Finding the optimal policy of water used from
such a coupled surface-underground storage was the sub-
ject of this dissertation. To develop the method of
determining the optimal policy, two main problems had

to be solved: (1) Modelling of the system; and, (2)
Optimization of water use.
The hydrologic modelling of the system was ap-

proached from the peint of view that a convenient
hydrologic model is needed to facilitate the optimiza-
tion without the use of excessive computer time, and
particularly, without the requirement of huge computer
memory. Within the framework of this study, only two
hydrologic components of the river flow were treated in
detail: (a) the exchange flow between the two stor-
u A
ages, Qqg; and, (b) the recharge to the aquifer

under specific conditions usually associated with karst
areas. The exchange flow was described using the
theory of hydrologic systems which is frequently used
to treat the practical problems of river hydrographs.
The exchange flow was assumed to be a function of the
states of the two interconnected storages. The develop
ment of the model was carried out in a generalized form.
Then, the customary simplifications, which are usually
made possible by the specific conditions found in river
basins, were discussed. In addition, the implications
of frequently made assumptions were examined.

Recharge modelling can be regarded as inseparable
from the modelling of the exchange flow. The process
of recharge in karstified catchments is somewhat speci-
fic. The model developed in this study was shown to be
able to accurately simulate the springflow of a karstic
river. Yet, the amount of computation to identify the
system was held at a minimum, because the use of only
two parameters of the model was sufficient to explain
over 90 percent of the springflow variation.

The optimization process in this study was neces-
sarily complex. It was solved by multilevel dynamic
optimization. The problem was decomposed into the re-
source allocation problem and multistage dynamic opti-
mization. The resource allocation problem was treated
as an equality constraint allocation problem thought of
as a conditional allocation.

Deterministic sequences were routed through the

multistage dynamic optimization. The integration of
the known components was carried out simultaneously
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“release was performed on two examples.

with the simulation of the exchange flow. In this
manner it was possible to perform the optimization at
a number of stages considered to be not computationally
excessive. Still, the variations of the hydrologic
series within the time intervals represented by one
stage are taken into account.

The fact that the optimal policy is found from
deterministic data sequences should not be regarded as
a drawback of the model. A similar technique was ex-
tensively used in the past under somewhat simpler con-
ditions, that is, with no underground storage.

The study was limited by the availability of test

Actual evaluation of the optimal policy of water
Except for the
hydrologic sequences of Lake Powell, all the data had
to be hypothesized. For that reason, the results pre-
sented herein should be viewed as a demonstration that
the model is capable of fulfilling the stated objective.
No conclusions concerning the actual operation of the
existing system at Lake Powell should be based on these
results.

data.

The proposed model should be tested on actual
coupled surface-underground storage systems in karst,
from which some experience concerning these systems
can be gained. The most important aspects to be in-
vestigated are:

1. To what extent the performance of a natural
hydrologic system will be affected by the system
modification.

2. What projections concerning the system response
to the atmospheric processes can be made at the plan-
ning stage of the water resources project. In other
words, what is the worth of data collected prior to
the reservoir construction.

3. What is the effect of the assumption of the
initial underground storage which was made to eliminate
the second state variable from the computation.

4. The process of determining the value of water
is complex. Economic and other factors that determine
water value are often unpredictable. Sensitivity
analysis should be performed to determine the possible
effects of changes in economic factors.



APPENDIX A

Karstic springs are usually outlets of large
natural underground storages. To demonstrate the sig-
nificance of these storages, three illustrative exam-
ples, compiled from various references, are presented
in Table A-1 and Fig. A-1. The underground storage
capacities associated with (1) San Felipe Spring, (2)
Goodenough Spring, and (3) the Trebi¥njica River
Spring are estimated assuming that the hydrologic sys-
tems are linear, i.e., that the discharge is propor-
tional to the water content of the underground
reservoir, so that the falling limb of the hydrograph
is expressed by Eq. 4-8. That is,

9,(t) = q (t)) exp [-c(t - t)] , (A-1)

where qu(-J is the underground outflow at the re-

spective times t and Ty and ¢ is a constant to

be determined for every specific drainage basin under
consideration. When Eq. A-1 is integrated from time
t,=0 totime t =« and multiplied by 86,400 to

convert the discharge per second into the total daily
flow,

Ve | $6,400 q (t) dt = [86,400 qu[O)]/c » (A-2)
t=0

is obtained. 1In Egq. A-2, V represents the total
water content of the underground reservoir at time
t = 0:

The coefficients, ¢, for the springs numbered (1)
and (2) are taken from Knisel [1972], while the co-
efficient of the Trebi¥njica River Spring was estimated
in this study, following a pattern similar to Knisel's.
Time t_  was taken to correspond to the maximum daily
spring “discharge for the denoted time period.

The mean daily discharge time equivalent is
defined as

(A-3)

[l
1]
ol|<

u

with g being the average dally flow over the studied
u

time period. Equation A-3 says that the mean daily
discharge time equivalent is the time that the mean
daily flow would need to discharge an amocunt of water
equal to the underground storage determined by Eq. A-2,
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Another interesting example is given by Burdon
and Safadi [1963]. It shows that the Ras-el-Ain
karstic spring in Syria issues from an underground 3
storage which has a volume of approximately 7.0 10° n°,

Figure A-1 depicts the mean daily discharge time
equivalent in days versus percentage of the total out-
flow (denoted as '"discharged storage percent" on the
left-hand ordinate). From these curves it can be

concluded that the system (3) corresponding to the
Trebisnjica River is fast responding as compared to
the system (2) of Goodenough Spring. The same conclu-
sion could be drawn from a visual inspection of the
respective hydrographs.

The Trebignjica River Spring is presently sub-
merged under the water of a surface reserveir created
by a recently built dam. When compared with the
capacity of the surface storage of approximately

Yo 109 ms, the maximum recorded underground storage

that occurred in the period prior to the reservoir con-
struction (1954-1966), was about 13.5 percent to

25.0 percent, depending on what estimate of the coef-
ficient ¢ was taken. Since the preceding analysis
reflects the hydraulic conditions associated with
extreme events, it should not be expected that the
underground capacity augments the existing surface
storage by 13.5 percent to 25.0 percent. Instead,
these figures should be taken as an indication of the
existance of the underground storage. Accurate es-
timates of the actual underground storages for this
example are unavailable at this time. However, they
are believed to be somewhere between 5.0 percent and
10.0 percent.

Investigations of the bank storage of Lake Powell
are based on an incomplete set of data, since the
reservoir has yet to be filled. Nevertheless, the
presently available observations show that the under-
ground storage is about 20.0 percent to 25.0 percent
of the surface storage.

Significant underground storage associated with
the Libby Reservoir in northwestern Montana was re-
ported by Coffin [1970]. A preliminary investigation
by an electric analog model estimated the bank storage
to be about 5.0 percent of the surface capacity of

five million acre-feet (approximately 6.1 10g ms].



Table A-1.

An Illustrative Example of Underground Storage Associated with Karstic Springs.

Spring & Location Average Period Maximum Date Coefficient Maximum Mean daily
daily daily exhaustion underground discharge time
flow flow c storage equivalent t
1 - e
4, %, © ’
[n°/s) (m°/s) (n°] [days)
San Felipe Spring  2.25 1967 3.34  09.16.67 0.0121 23.8 10° 123
Del Rio, Texas USA  2.27 1961-1967 + + - - +
Goodenough Spring 3,02 1967 9,08 09.03,67 0.00463 169.0 106 650
Comstock, Texas 3.80 1930-1967 18.4 10.10.58 0.00463 343.0 106 1050
usa
1 6
The Trebignjica _49.0 1966 218.0 10.10.66 A) 0.065 290.0 10 68
6 w
River Spring B) 0.121 156.0 10 36
Biléc
RESE Sk 44.4 1954-1966  247.0 05.03.65  A) 0.065 328.0 10° 86
Y 14" '
ugeslaiin B) 0.121 177.0 10° a6

*
Coefficient ¢ refers to Case A of Section 5-4, Eq. 5-28 and Case B of the same

+Data unavailahle.

100

section Eq. 5-23.

B8O 20
b
2
g 60 |. San Felipe Springs,Del Rio, Texas ,USA. 40
b 2. Goodenough Spring,Comstock, Texas, USA.
3 3 Trebisnjica River Spring, Bile€a, Yugoslavia
5 a0 A. Coefficient ¢=0.065 (Eq.5-28) leo
S B. Coefficient c=0.121  (Eq. 5-23)
2
20 <80
1 | 1 Y 1 i 1 L 1 O
CO 100 200 300 400 500 600 700 800 900 IO&)
days
Fig. A-1.
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